This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302965 #4 Apr 16 2018 11:55:29 %S A302965 1,2,2,4,8,4,8,29,32,8,16,105,154,128,16,32,384,786,833,512,32,64, %T A302965 1405,3924,6206,4527,2048,64,128,5135,19868,43588,49521,24602,8192, %U A302965 128,256,18766,100161,314989,493132,395493,133757,32768,256,512,68589,505908 %N A302965 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 2, 3 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero. %C A302965 Table starts %C A302965 ...1......2.......4.........8.........16...........32.............64 %C A302965 ...2......8......29.......105........384.........1405...........5135 %C A302965 ...4.....32.....154.......786.......3924........19868.........100161 %C A302965 ...8....128.....833......6206......43588.......314989........2257439 %C A302965 ..16....512....4527.....49521.....493132......5122000.......52646395 %C A302965 ..32...2048...24602....395493....5602382.....83644490.....1233435694 %C A302965 ..64...8192..133757...3157171...63612987...1365216668....28906043997 %C A302965 .128..32768..727293..25208524..722646394..22301032112...677939939546 %C A302965 .256.131072.3954552.201291251.8212135689.364489574945.15913688413086 %H A302965 R. H. Hardin, <a href="/A302965/b302965.txt">Table of n, a(n) for n = 1..180</a> %F A302965 Empirical for column k: %F A302965 k=1: a(n) = 2*a(n-1) %F A302965 k=2: a(n) = 4*a(n-1) %F A302965 k=3: a(n) = 7*a(n-1) -7*a(n-2) -56*a(n-4) +64*a(n-5) for n>6 %F A302965 k=4: [order 19] for n>20 %F A302965 k=5: [order 80] for n>81 %F A302965 Empirical for row n: %F A302965 n=1: a(n) = 2*a(n-1) %F A302965 n=2: a(n) = 3*a(n-1) +a(n-2) +4*a(n-3) +4*a(n-4) %F A302965 n=3: [order 12] for n>13 %F A302965 n=4: [order 44] for n>45 %e A302965 Some solutions for n=5 k=4 %e A302965 ..0..1..0..1. .0..1..1..0. .0..0..0..1. .0..0..1..0. .0..0..1..0 %e A302965 ..1..1..0..0. .0..0..0..0. .0..0..1..1. .1..0..1..1. .1..0..1..0 %e A302965 ..0..1..0..0. .1..1..1..1. .1..0..1..1. .0..1..0..0. .1..0..1..0 %e A302965 ..1..1..1..1. .1..0..0..1. .1..0..1..0. .0..1..0..0. .1..0..1..1 %e A302965 ..1..0..0..0. .1..0..1..0. .1..0..1..0. .0..1..0..1. .0..1..0..0 %Y A302965 Column 1 is A000079(n-1). %Y A302965 Column 2 is A004171(n-1). %Y A302965 Row 1 is A000079(n-1). %Y A302965 Row 2 is A302266. %K A302965 nonn,tabl %O A302965 1,2 %A A302965 _R. H. Hardin_, Apr 16 2018