cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302967 Number of 4Xn 0..1 arrays with every element equal to 0, 1, 2, 3 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

This page as a plain text file.
%I A302967 #4 Apr 16 2018 11:56:50
%S A302967 8,128,833,6206,43588,314989,2257439,16185343,116204095,833483135,
%T A302967 5980966891,42913914839,307909560484,2209334749489,15852297971877,
%U A302967 113743491247020,816131893706879,5855905976037061,42017301642505309
%N A302967 Number of 4Xn 0..1 arrays with every element equal to 0, 1, 2, 3 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
%C A302967 Row 4 of A302965.
%H A302967 R. H. Hardin, <a href="/A302967/b302967.txt">Table of n, a(n) for n = 1..210</a>
%F A302967 Empirical: a(n) = 5*a(n-1) +39*a(n-2) -87*a(n-3) -746*a(n-4) +399*a(n-5) +6441*a(n-6) -1542*a(n-7) -31979*a(n-8) +15388*a(n-9) +102271*a(n-10) -99205*a(n-11) -189571*a(n-12) +378314*a(n-13) +95629*a(n-14) -922139*a(n-15) +432966*a(n-16) +1513625*a(n-17) -1169356*a(n-18) -1784530*a(n-19) +1289751*a(n-20) +1680189*a(n-21) -440536*a(n-22) -1343524*a(n-23) -620710*a(n-24) +733726*a(n-25) +1051878*a(n-26) -28193*a(n-27) -795545*a(n-28) -340122*a(n-29) +289414*a(n-30) +324203*a(n-31) +22695*a(n-32) -165451*a(n-33) -67937*a(n-34) +36248*a(n-35) +31158*a(n-36) +3843*a(n-37) -5639*a(n-38) -2823*a(n-39) -518*a(n-40) +244*a(n-41) +316*a(n-42) +16*a(n-43) -28*a(n-44) for n>45
%e A302967 Some solutions for n=5
%e A302967 ..0..0..1..1..0. .0..1..0..1..1. .0..0..1..0..1. .0..0..1..1..0
%e A302967 ..0..1..1..0..1. .1..0..1..1..0. .0..1..0..1..0. .1..1..0..1..0
%e A302967 ..0..0..1..0..0. .0..0..1..0..0. .0..0..0..1..1. .0..1..0..1..1
%e A302967 ..0..0..1..1..0. .0..0..1..1..1. .0..1..0..1..1. .0..0..1..1..0
%Y A302967 Cf. A302965.
%K A302967 nonn
%O A302967 1,1
%A A302967 _R. H. Hardin_, Apr 16 2018