This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302975 #12 Jul 13 2025 19:16:54 %S A302975 1,1,9,64,25,81,49,1,1,625,121,1,169,2401,50625,1048576,289,1,361, %T A302975 15625,194481,14641,529,6561,15625,28561,531441,117649,841,2562890625, %U A302975 961,1,1185921,83521,1500625,262144,1369,130321,2313441,390625,1681,37822859361,1849 %N A302975 a(n) = denominator of tau(n)^n / n^tau(n). %C A302975 tau(n) = the number of the divisors of n (A000005). %C A302975 Conjecture: all terms are squares. %C A302975 a(n) >= A302974(n) only for numbers n = 1, 2 and 3. %H A302975 Harvey P. Dale, <a href="/A302975/b302975.txt">Table of n, a(n) for n = 1..1000</a> %F A302975 a(p) = p^2 for p = prime. %F A302975 a(A120737(n)) = 1. %e A302975 For n = 6; tau(6)^6 / 6^tau(6) = 4^6 / 6^4 = 256 / 81; a(6) = 81. %t A302975 Denominator[#[[2]]^#[[1]]/#[[1]]^#[[2]]]&/@Table[{n,DivisorSigma[0,n]},{n,50}] (* _Harvey P. Dale_, Sep 15 2019 *) %o A302975 (Magma) [Denominator((NumberOfDivisors(n)^n) / (n^NumberOfDivisors(n))): n in[1..100]]; %Y A302975 Cf. A000005, A120737, A302974, A302976. %K A302975 nonn,frac %O A302975 1,3 %A A302975 _Jaroslav Krizek_, Apr 16 2018