cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302982 Number of ways to write n as x^2 + 5*y^2 + 2^z + 3*2^w with x,y,z,w nonnegative integers.

Original entry on oeis.org

0, 0, 0, 1, 2, 1, 2, 4, 3, 3, 5, 4, 6, 7, 4, 7, 5, 4, 7, 8, 5, 5, 8, 5, 9, 7, 6, 13, 10, 7, 9, 10, 7, 12, 11, 8, 11, 7, 7, 11, 11, 6, 11, 13, 6, 10, 7, 7, 17, 13, 6, 13, 14, 9, 11, 18, 10, 13, 14, 11
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 16 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 3.
Clearly, a(4*n) > 0 if a(n) > 0. We have verified a(n) > 0 for all n = 4..2*10^8.
See also A302983 and A302984 for similar conjectures.

Examples

			a(4) = 1 with 4 = 0^2 + 5*0^2 + 2^0 + 3*2^0.
a(5) = 2 with 5 =  1^2 + 5*0^2 + 2^0 + 3*2^0 = 0^2 + 5*0^2 + 2^1 + 3*2^0.
a(6) = 1 with 6 = 1^2 + 3*0^2 + 2^1 + 3*2^0.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[SQ[n-3*2^k-2^j-5x^2],r=r+1],{k,0,Log[2,n/3]},{j,0,If[n==3*2^k,-1,Log[2,n-3*2^k]]},{x,0,Sqrt[(n-3*2^k-2^j)/5]}];tab=Append[tab,r],{n,1,60}];Print[tab]