A302982 Number of ways to write n as x^2 + 5*y^2 + 2^z + 3*2^w with x,y,z,w nonnegative integers.
0, 0, 0, 1, 2, 1, 2, 4, 3, 3, 5, 4, 6, 7, 4, 7, 5, 4, 7, 8, 5, 5, 8, 5, 9, 7, 6, 13, 10, 7, 9, 10, 7, 12, 11, 8, 11, 7, 7, 11, 11, 6, 11, 13, 6, 10, 7, 7, 17, 13, 6, 13, 14, 9, 11, 18, 10, 13, 14, 11
Offset: 1
Keywords
Examples
a(4) = 1 with 4 = 0^2 + 5*0^2 + 2^0 + 3*2^0. a(5) = 2 with 5 = 1^2 + 5*0^2 + 2^0 + 3*2^0 = 0^2 + 5*0^2 + 2^1 + 3*2^0. a(6) = 1 with 6 = 1^2 + 3*0^2 + 2^1 + 3*2^0.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
- Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120.
- Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
Crossrefs
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; tab={};Do[r=0;Do[If[SQ[n-3*2^k-2^j-5x^2],r=r+1],{k,0,Log[2,n/3]},{j,0,If[n==3*2^k,-1,Log[2,n-3*2^k]]},{x,0,Sqrt[(n-3*2^k-2^j)/5]}];tab=Append[tab,r],{n,1,60}];Print[tab]
Comments