This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302996 #13 Feb 16 2025 08:33:53 %S A302996 1,1,0,1,2,0,1,4,2,0,1,6,4,2,0,1,8,6,4,2,0,1,10,24,30,4,2,0,1,12,90, %T A302996 104,6,12,2,0,1,14,252,250,24,30,4,2,0,1,16,574,876,730,248,30,4,2,0, %U A302996 1,18,1136,3542,4092,1210,312,54,4,2,0,1,20,2034,12112,18494,7812,2250,456,6,4,2,0 %N A302996 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals: A(n,k) = [x^(n^2)] theta_3(x)^k, where theta_3() is the Jacobi theta function. %C A302996 A(n,k) is the number of ordered ways of writing n^2 as a sum of k squares. %H A302996 Alois P. Heinz, <a href="/A302996/b302996.txt">Antidiagonals n = 0..200, flattened</a> %H A302996 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a> %H A302996 <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a> %F A302996 A(n,k) = [x^(n^2)] (Sum_{j=-infinity..infinity} x^(j^2))^k. %e A302996 Square array begins: %e A302996 1, 1, 1, 1, 1, 1, ... %e A302996 0, 2, 4, 6, 8, 10, ... %e A302996 0, 2, 4, 6, 24, 90, ... %e A302996 0, 2, 4, 30, 104, 250, ... %e A302996 0, 2, 4, 6, 24, 730, ... %e A302996 0, 2, 12, 30, 248, 1210, ... %p A302996 b:= proc(n, t) option remember; `if`(n=0, 1, `if`(n<0 or t<1, 0, %p A302996 b(n, t-1)+2*add(b(n-j^2, t-1), j=1..isqrt(n)))) %p A302996 end: %p A302996 A:= (n, k)-> b(n^2, k): %p A302996 seq(seq(A(n,d-n), n=0..d), d=0..12); # _Alois P. Heinz_, Mar 10 2023 %t A302996 Table[Function[k, SeriesCoefficient[EllipticTheta[3, 0, x]^k, {x, 0, n^2}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten %t A302996 Table[Function[k, SeriesCoefficient[Sum[x^i^2, {i, -n, n}]^k, {x, 0, n^2}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten %Y A302996 Columns k=0..4,7 give A000007, A040000, A046109, A016725, A267326, A361695. %Y A302996 Main diagonal gives A232173. %Y A302996 Cf. A000122, A122141, A255212, A286815. %K A302996 nonn,tabl %O A302996 0,5 %A A302996 _Ilya Gutkovskiy_, Apr 17 2018