cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303022 Number of free pure symmetric multifunctions (with empty expressions allowed) with one atom, n positions, and no unitary parts (subexpressions of the form x[y]).

This page as a plain text file.
%I A303022 #16 Sep 11 2018 21:12:30
%S A303022 1,1,1,2,5,12,27,63,152,376,939,2371,6047,15577,40429,105637,277625,
%T A303022 733518,1947126,5190503,13888811,37291968,100444019,271316998,
%U A303022 734802247,1994873116,5427893149,14799525982,40429761365,110645688034,303316712450,832799212777
%N A303022 Number of free pure symmetric multifunctions (with empty expressions allowed) with one atom, n positions, and no unitary parts (subexpressions of the form x[y]).
%C A303022 Also the number of orderless Mathematica expressions with one atom, n positions, and no unitary parts.
%H A303022 Andrew Howroyd, <a href="/A303022/b303022.txt">Table of n, a(n) for n = 1..200</a>
%e A303022 The a(6) = 12 Mathematica expressions:
%e A303022   o[o,o[][]]
%e A303022   o[o[],o[]]
%e A303022   o[o,o,o[]]
%e A303022   o[o,o,o,o]
%e A303022   o[][o,o[]]
%e A303022   o[][o,o,o]
%e A303022   o[][][o,o]
%e A303022   o[o,o[]][]
%e A303022   o[o,o,o][]
%e A303022   o[][o,o][]
%e A303022   o[o,o][][]
%e A303022   o[][][][][]
%t A303022 allOLBF[n_]:=allOLBF[n]=If[n==1,{"o"},Join@@Cases[Table[PR[k,n-k-1],{k,n-1}],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{allOLBF[h],Select[Union[Sort/@Tuples[allOLBF/@p]],Length[#]!=1&]}],{p,IntegerPartitions[g]}]]];
%t A303022 Table[Length[allOLBF[n]],{n,10}]
%o A303022 (PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
%o A303022 seq(n)={my(v=[1]); for(n=2, n, my(t=EulerT(v)-v); v=concat(v, v[n-1] + sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ _Andrew Howroyd_, Aug 19 2018
%Y A303022 Cf. A000108, A001003, A001006, A007853, A102403, A126120, A318049.
%Y A303022 Cf. A303023, A303024, A303025, A303026, A303027.
%K A303022 nonn
%O A303022 1,4
%A A303022 _Gus Wiseman_, Aug 15 2018
%E A303022 Terms a(21) and beyond from _Andrew Howroyd_, Aug 19 2018