A303026 Matula-Goebel numbers of series-reduced anti-binary (no unary or binary branchings) rooted trees.
1, 8, 16, 32, 64, 76, 128, 152, 212, 256, 304, 424, 512, 524, 608, 722, 848, 1024, 1048, 1216, 1244, 1444, 1532, 1696, 2014, 2048, 2096, 2432, 2488, 2876, 2888, 3064, 3392, 3524, 4028, 4096, 4192, 4864, 4976, 4978, 5204, 5618, 5752, 5776, 6128, 6476, 6784
Offset: 1
Keywords
Examples
The sequence of series-reduced anti-binary rooted trees together with their Matula-Goebel numbers begins: 1: o 8: (ooo) 16: (oooo) 32: (ooooo) 64: (oooooo) 76: (oo(ooo)) 128: (ooooooo) 152: (ooo(ooo)) 212: (oo(oooo)) 256: (oooooooo) 304: (oooo(ooo)) 424: (ooo(oooo)) 512: (ooooooooo) 524: (oo(ooooo)) 608: (ooooo(ooo)) 722: (o(ooo)(ooo)) 848: (oooo(oooo)) 1024: (oooooooooo) 1048: (ooo(ooooo)) 1216: (oooooo(ooo)) 1244: (oo(oooooo)) 1444: (oo(ooo)(ooo)) 1532: (oo(oo(ooo))) 1696: (ooooo(oooo)) 2014: (o(ooo)(oooo)) 2048: (ooooooooooo)
Crossrefs
Programs
-
Mathematica
azQ[n_]:=Or[n==1,And[PrimeOmega[n]>2,And@@Cases[FactorInteger[n],{p_,_}:>azQ[PrimePi[p]]]]] Select[Range[1000],azQ]