cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303036 Number of nX4 0..1 arrays with every element equal to 0, 1, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

This page as a plain text file.
%I A303036 #4 Apr 17 2018 13:20:56
%S A303036 5,21,28,74,197,544,1686,5252,16336,52895,174633,585706,2005396,
%T A303036 6966921,24490114,86986183,311425171,1121853996,4061084204,
%U A303036 14755768611,53766216246,196333300490,718099046548,2629697794146,9638889966861
%N A303036 Number of nX4 0..1 arrays with every element equal to 0, 1, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
%C A303036 Column 4 of A303040.
%H A303036 R. H. Hardin, <a href="/A303036/b303036.txt">Table of n, a(n) for n = 1..210</a>
%F A303036 Empirical: a(n) = 5*a(n-1) -4*a(n-2) +17*a(n-3) -73*a(n-4) -27*a(n-5) -86*a(n-6) +412*a(n-7) +715*a(n-8) +717*a(n-9) -678*a(n-10) -2990*a(n-11) -4820*a(n-12) -4520*a(n-13) -1759*a(n-14) +2115*a(n-15) +10728*a(n-16) +26758*a(n-17) +47806*a(n-18) +55437*a(n-19) +28104*a(n-20) -39265*a(n-21) -114473*a(n-22) -130982*a(n-23) -83874*a(n-24) -24037*a(n-25) -59472*a(n-26) -179450*a(n-27) -261480*a(n-28) -146144*a(n-29) +102190*a(n-30) +239624*a(n-31) +64037*a(n-32) -296364*a(n-33) -461631*a(n-34) -174575*a(n-35) +392211*a(n-36) +747124*a(n-37) +685309*a(n-38) +266070*a(n-39) -93667*a(n-40) -163661*a(n-41) -10697*a(n-42) +100455*a(n-43) +76977*a(n-44) -44571*a(n-45) -130982*a(n-46) -137118*a(n-47) -73015*a(n-48) -9401*a(n-49) +21851*a(n-50) +21527*a(n-51) -1519*a(n-52) -8400*a(n-53) -687*a(n-54) -302*a(n-55) +1732*a(n-56) +4267*a(n-57) +3151*a(n-58) +551*a(n-59) -1037*a(n-60) -1149*a(n-61) -351*a(n-62) +325*a(n-63) +201*a(n-64) -52*a(n-65) -62*a(n-66) +4*a(n-67) +13*a(n-68) -a(n-70)
%e A303036 Some solutions for n=5
%e A303036 ..0..0..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1
%e A303036 ..0..1..0..1. .0..1..0..1. .1..1..0..1. .0..1..0..1. .0..1..0..1
%e A303036 ..0..1..1..1. .0..1..0..1. .0..1..0..1. .0..1..0..0. .0..1..0..1
%e A303036 ..0..1..0..1. .0..1..0..0. .0..1..0..1. .0..1..0..1. .0..1..1..1
%e A303036 ..0..1..0..1. .0..1..0..1. .0..1..1..1. .0..1..1..1. .0..1..0..1
%Y A303036 Cf. A303040.
%K A303036 nonn
%O A303036 1,1
%A A303036 _R. H. Hardin_, Apr 17 2018