This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303056 #38 Sep 29 2023 10:30:15 %S A303056 1,1,1,8,89,1326,24247,521764,12867985,357229785,11017306489, %T A303056 373675921093,13825260663882,554216064798423,23934356706763264, %U A303056 1108017262467214486,54747529760516714323,2876096694574711401525,160092696678371426933342,9413031424290635395882462,583000844360279565483710624 %N A303056 G.f. A(x) satisfies: 1 = Sum_{n>=0} ((1+x)^n - A(x))^n. %C A303056 More generally, the following sums are equal: %C A303056 (1) Sum_{n>=0} binomial(n+k-1, n) * r^n * (p + q^n)^n, %C A303056 (2) Sum_{n>=0} binomial(n+k-1, n) * r^n * q^(n^2) / (1 - r*p*q^n)^(n+k), %C A303056 for any fixed integer k; here, k = 1 with r = 1, p = -A(x), q = (1+x). - _Paul D. Hanna_, Jun 22 2019 %H A303056 Paul D. Hanna, <a href="/A303056/b303056.txt">Table of n, a(n) for n = 0..200</a> %F A303056 G.f. A(x) satisfies: %F A303056 (1) 1 = Sum_{n>=0} ((1+x)^n - A(x))^n. %F A303056 (2) 1 = Sum_{n>=0} (1+x)^(n^2) / (1 + (1+x)^n*A(x))^(n+1). %F A303056 a(n) ~ c * d^n * n! / sqrt(n), where d = A317855 = 3.1610886538654... and c = 0.11739505492506... - _Vaclav Kotesovec_, Sep 26 2020 %e A303056 G.f.: A(x) = 1 + x + x^2 + 8*x^3 + 89*x^4 + 1326*x^5 + 24247*x^6 + 521764*x^7 + 12867985*x^8 + 357229785*x^9 + 11017306489*x^10 + ... %e A303056 such that %e A303056 1 = 1 + ((1+x) - A(x)) + ((1+x)^2 - A(x))^2 + ((1+x)^3 - A(x))^3 + ((1+x)^4 - A(x))^4 + ((1+x)^5 - A(x))^5 + ((1+x)^6 - A(x))^6 + ((1+x)^7 - A(x))^7 + ... %e A303056 Also, %e A303056 1 = 1/(1 + A(x)) + (1+x)/(1 + (1+x)*A(x))^2 + (1+x)^4/(1 + (1+x)^2*A(x))^3 + (1+x)^9/(1 + (1+x)^3*A(x))^4 + (1+x)^16/(1 + (1+x)^4*A(x))^5 + (1+x)^25/(1 + (1+x)^5*A(x))^6 + (1+x)^36/(1 + (1+x)^6*A(x))^7 + ... %e A303056 RELATED SERIES. %e A303056 log(A(x)) = x + x^2/2 + 22*x^3/3 + 325*x^4/4 + 6186*x^5/5 + 137380*x^6/6 + 3478651*x^7/7 + 98674253*x^8/8 + 3096911434*x^9/9 + ... %e A303056 PARTICULAR VALUES. %e A303056 Although the power series A(x) diverges at x = -1/2, it may be evaluated formally. %e A303056 Let t = A(-1/2) = 0.545218973635949431234950245034944106957612798888179456724264... %e A303056 then t satisfies %e A303056 (1) 1 = Sum_{n>=0} ( 1/2^n - t )^n. %e A303056 (2) 1 = Sum_{n>=0} 2^n / ( 2^n + t )^(n+1). %e A303056 Also, %e A303056 A(r) = 1/2 at r = -0.54683649902292991492196620520872286547799291909992048564578... %e A303056 where %e A303056 (1) 1 = Sum_{n>=0} ( (1+r)^n - 1/2 )^n. %e A303056 (2) 1 = Sum_{n>=0} (1+r)^(-n) / ( 1/(1+r)^n + 1/2 )^(n+1). %o A303056 (PARI) {a(n) = my(A=[1]); for(i=0,n, A=concat(A,0); A[#A] = Vec( sum(m=0,#A, ((1+x)^m - Ser(A))^m ) )[#A] );A[n+1]} %o A303056 for(n=0,30, print1(a(n),", ")) %Y A303056 Cf. A304642, A304639, A303926. %Y A303056 Cf. A321602, A321603, A321604, A321605. %Y A303056 Cf. A326282, A326283, A326284. %Y A303056 Cf. A337755, A337756, A337757. %K A303056 nonn %O A303056 0,4 %A A303056 _Paul D. Hanna_, Apr 19 2018