This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303071 #10 May 19 2018 04:30:45 %S A303071 1,2,6,23,90,362,1491,6225,26242,111479,476466,2046464,8825559, %T A303071 38191467,165751529,721177328,3144703234,13739010855,60127642329, %U A303071 263545670385,1156732481150,5083320593976,22364017244278,98491038664903,434160710647831,1915482295831037,8457663096970431 %N A303071 a(n) = [x^n] (1/(1 - x))*Product_{k>=1} (1 + x^k)^n. %H A303071 Vaclav Kotesovec, <a href="/A303071/b303071.txt">Table of n, a(n) for n = 0..300</a> %H A303071 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A303071 a(n) = [x^n] (1/(1 - x))*exp(n*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). %F A303071 a(n) = Sum_{j=0..n} A286335(j,n). %F A303071 a(n) ~ c * d^n / sqrt(n), where d = A270914 = 4.5024767476173544877385939327007... and c = 0.44252758868364961050787771300805... - _Vaclav Kotesovec_, May 19 2018 %t A303071 Table[SeriesCoefficient[1/(1 - x) Product[(1 + x^k)^n, {k, 1, n}], {x, 0, n}], {n, 0, 26}] %t A303071 Table[SeriesCoefficient[1/(1 - x) Exp[n Sum[(-1)^(k + 1) x^k/(k (1 - x^k)), {k, 1, n}]], {x, 0, n}], {n, 0, 26}] %Y A303071 Cf. A036469, A270913, A286335, A303070. %K A303071 nonn %O A303071 0,2 %A A303071 _Ilya Gutkovskiy_, Apr 18 2018