This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303075 #13 May 03 2018 11:21:28 %S A303075 1,3,2,7,5,6,4,9,11,13,15,8,10,19,23,12,14,29,16,17,18,31,20,21,24,25, %T A303075 27,26,22,28,63,32,33,34,35,37,30,40,39,38,41,42,47,48,49,51,43,55,56, %U A303075 50,52,59,57,61,64,65,45,67,36,44,69,53,73,71,46,62,75 %N A303075 Lexicographically earliest sequence of distinct positive terms such that for any n > 0, the binary digits of a(n) appear in order but not necessarily as consecutive digits in the binary representation of the n-th prime number. %C A303075 This sequence is a permutation of the natural numbers with inverse A303076. %C A303075 This sequence has similarities with A286417; there binary digits have to be consecutive, here not. %H A303075 Rémy Sigrist, <a href="/A303075/b303075.txt">Table of n, a(n) for n = 1..10000</a> %H A303075 Rémy Sigrist, <a href="/A303075/a303075.gp.txt">PARI program for A303075</a> %H A303075 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %H A303075 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A303075 a(n) <= A000040(n). %e A303075 The first terms, alongside the binary representations of the n-th prime and of a(n), are: %e A303075 n a(n) bin(p_n) bin(a(n)) %e A303075 -- ---- -------- --------- %e A303075 1 1 10 1_ %e A303075 2 3 11 11 %e A303075 3 2 101 10_ %e A303075 4 7 111 111 %e A303075 5 5 1011 101_ %e A303075 6 6 1101 110_ %e A303075 7 4 10001 100__ %e A303075 8 9 10011 1001_ %e A303075 9 11 10111 1011_ %e A303075 10 13 11101 11_01 %e A303075 11 15 11111 1111_ %e A303075 12 8 100101 100_0_ %e A303075 13 10 101001 1010__ %e A303075 14 19 101011 10_011 %e A303075 15 23 101111 10111_ %o A303075 (PARI) See Links section. %Y A303075 Cf. A000040, A286417, A303076 (inverse). %K A303075 nonn,base,look %O A303075 1,2 %A A303075 _Rémy Sigrist_, Apr 18 2018