cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303077 a(1) = 1, and for n > 1, a(n) is the greatest prime number whose binary digits appear in order but not necessarily as consecutive digits in the binary representation of n.

This page as a plain text file.
%I A303077 #8 Apr 25 2018 10:47:28
%S A303077 1,2,3,2,5,3,7,2,5,5,11,3,13,7,7,2,17,5,19,5,13,11,23,3,13,13,13,7,29,
%T A303077 7,31,2,17,17,19,5,37,19,23,5,41,13,43,11,29,23,47,3,17,13,19,13,53,
%U A303077 13,31,7,29,29,59,7,61,31,31,2,17,17,67,17,37,19,71,5
%N A303077 a(1) = 1, and for n > 1, a(n) is the greatest prime number whose binary digits appear in order but not necessarily as consecutive digits in the binary representation of n.
%C A303077 This sequence has similarities with A078833; there binary digits have to be consecutive, here not.
%C A303077 For n > 1, a(n) is the greatest prime number appearing in the n-th row of A301983.
%H A303077 Rémy Sigrist, <a href="/A303077/b303077.txt">Table of n, a(n) for n = 1..10000</a>
%H A303077 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%F A303077 a(2*n) = a(n) for any n > 1.
%F A303077 a(n) = n iff n is not composite.
%F A303077 a(n) = 2 iff n = 2^k for some k > 0.
%F A303077 a(n) >= A078833(n).
%e A303077 The first terms, alongside the binary representations of n and of a(n), are:
%e A303077   n   a(n)  bin(n)  bin(a(n))
%e A303077   --  ----  ------  ---------
%e A303077    1     1       1       1
%e A303077    2     2      10      10
%e A303077    3     3      11      11
%e A303077    4     2     100     10_
%e A303077    5     5     101     101
%e A303077    6     3     110     11_
%e A303077    7     7     111     111
%e A303077    8     2    1000    10__
%e A303077    9     5    1001    10_1
%e A303077   10     5    1010    101_
%e A303077   11    11    1011    1011
%e A303077   12     3    1100    11__
%e A303077   13    13    1101    1101
%e A303077   14     7    1110    111_
%e A303077   15     7    1111    111_
%o A303077 (PARI) a(n) = my (s=Set(1), b=binary(n)); for (i=2, #b, s=setunion(s, Set(apply(k->2*k+b[i], s)))); vecmax(select(k->k==1 || isprime(k), s))
%Y A303077 Cf. A078833, A301983.
%K A303077 nonn,base
%O A303077 1,2
%A A303077 _Rémy Sigrist_, Apr 18 2018