A303098 Number of n X 4 0..1 arrays with every element equal to 1, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
2, 46, 431, 4667, 49534, 523578, 5550469, 58797885, 622939052, 6599795867, 69921718286, 740789814624, 7848336732510, 83149623160674, 880933142617394, 9333093335046307, 98879957242770978, 1047589002709557389
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..1..0. .0..1..1..1. .0..0..1..1. .0..1..1..1. .0..0..0..0 ..0..1..0..0. .1..0..0..1. .1..1..0..0. .0..0..1..0. .0..1..0..0 ..1..0..1..1. .1..1..0..0. .1..0..0..1. .1..1..0..1. .1..1..0..0 ..1..1..0..1. .0..0..0..1. .1..0..1..0. .1..0..0..1. .0..1..1..0 ..1..1..0..0. .1..1..1..1. .1..1..1..1. .1..1..1..0. .1..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A303102.
Formula
Empirical: a(n) = 9*a(n-1) +26*a(n-2) -57*a(n-3) -433*a(n-4) -47*a(n-5) +1932*a(n-6) +2731*a(n-7) -3490*a(n-8) -6960*a(n-9) +156*a(n-10) +748*a(n-11) +3388*a(n-12) +5000*a(n-13) +12879*a(n-14) +2488*a(n-15) -9412*a(n-16) -11225*a(n-17) -870*a(n-18) -5309*a(n-19) +3368*a(n-20) -2123*a(n-21) +1230*a(n-22) -349*a(n-23) +121*a(n-24) +28*a(n-25) -26*a(n-26).
Comments