This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303102 #4 Apr 18 2018 12:39:07 %S A303102 0,1,0,1,3,0,2,15,11,0,3,46,77,34,0,5,161,431,486,111,0,8,601,2913, %T A303102 4667,2869,361,0,13,2208,19393,58160,49534,17229,1172,0,21,8053, %U A303102 128921,709333,1138331,523578,102952,3809,0,34,29415,857789,8650205,25372284,22292709 %N A303102 T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero. %C A303102 Table starts %C A303102 .0.....1.......1.........2............3..............5.................8 %C A303102 .0.....3......15........46..........161............601..............2208 %C A303102 .0....11......77.......431.........2913..........19393............128921 %C A303102 .0....34.....486......4667........58160.........709333...........8650205 %C A303102 .0...111....2869.....49534......1138331.......25372284.........568099880 %C A303102 .0...361...17229....523578.....22292709......906385523.......37220475492 %C A303102 .0..1172..102952...5550469....436394066....32409609245.....2441756629583 %C A303102 .0..3809..616065..58797885...8545589681..1158734336743...160164698180399 %C A303102 .0.12377.3685099.622939052.167325743073.41428642572259.10505922762123798 %H A303102 R. H. Hardin, <a href="/A303102/b303102.txt">Table of n, a(n) for n = 1..180</a> %F A303102 Empirical for column k: %F A303102 k=1: a(n) = a(n-1) %F A303102 k=2: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4) %F A303102 k=3: [order 11] %F A303102 k=4: [order 26] %F A303102 k=5: [order 90] for n>91 %F A303102 Empirical for row n: %F A303102 n=1: a(n) = a(n-1) +a(n-2) %F A303102 n=2: a(n) = 3*a(n-1) +a(n-2) +4*a(n-3) +4*a(n-4) for n>5 %F A303102 n=3: [order 14] for n>15 %F A303102 n=4: [order 42] for n>43 %e A303102 Some solutions for n=5 k=4 %e A303102 ..0..1..1..1. .0..0..1..1. .0..0..1..1. .0..0..0..0. .0..1..0..1 %e A303102 ..1..0..1..0. .1..1..1..1. .1..1..0..0. .0..1..1..1. .0..0..1..0 %e A303102 ..1..0..0..1. .0..0..0..1. .1..1..1..1. .0..0..1..0. .1..0..0..0 %e A303102 ..0..1..1..0. .0..1..1..0. .0..0..0..0. .0..1..0..1. .0..1..1..1 %e A303102 ..1..1..0..0. .1..1..0..0. .1..1..1..1. .1..0..1..0. .1..0..0..0 %Y A303102 Column 2 is A180762. %Y A303102 Row 1 is A000045(n-1). %Y A303102 Row 2 is A232077(n-1). %K A303102 nonn,tabl %O A303102 1,5 %A A303102 _R. H. Hardin_, Apr 18 2018