cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303104 Number of 4Xn 0..1 arrays with every element equal to 1, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

This page as a plain text file.
%I A303104 #4 Apr 18 2018 12:40:32
%S A303104 0,34,486,4667,58160,709333,8650205,105436196,1286046720,15685227253,
%T A303104 191303245493,2333214940038,28456911783357,347072876019793,
%U A303104 4233051764860040,51628141257110184,629679277168773956
%N A303104 Number of 4Xn 0..1 arrays with every element equal to 1, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
%C A303104 Row 4 of A303102.
%H A303104 R. H. Hardin, <a href="/A303104/b303104.txt">Table of n, a(n) for n = 1..210</a>
%F A303104 Empirical: a(n) = 9*a(n-1) +41*a(n-2) -19*a(n-3) +3*a(n-4) -692*a(n-5) -2321*a(n-6) +2649*a(n-7) -1848*a(n-8) -8325*a(n-9) +24753*a(n-10) -18574*a(n-11) -5669*a(n-12) +130211*a(n-13) -63145*a(n-14) -56175*a(n-15) +439103*a(n-16) -1055232*a(n-17) +487761*a(n-18) +905617*a(n-19) -2539340*a(n-20) +3298602*a(n-21) -868897*a(n-22) -2726302*a(n-23) +3256193*a(n-24) -3669871*a(n-25) +652616*a(n-26) +1228590*a(n-27) -2015706*a(n-28) +1416147*a(n-29) -341988*a(n-30) -424681*a(n-31) +406254*a(n-32) -69966*a(n-33) -14182*a(n-34) +10399*a(n-35) -13454*a(n-36) -1436*a(n-37) +4777*a(n-38) +451*a(n-39) -713*a(n-40) -42*a(n-41) +32*a(n-42) for n>43
%e A303104 Some solutions for n=5
%e A303104 ..0..1..1..1..1. .0..0..1..1..0. .0..1..0..1..1. .0..1..0..0..0
%e A303104 ..0..0..1..0..1. .1..0..1..0..0. .1..0..0..1..1. .1..0..0..0..1
%e A303104 ..0..0..0..1..1. .1..1..1..1..1. .0..1..1..0..0. .1..1..1..1..0
%e A303104 ..1..1..0..0..0. .0..0..0..0..1. .1..1..1..1..1. .1..0..0..1..1
%Y A303104 Cf. A303102.
%K A303104 nonn
%O A303104 1,2
%A A303104 _R. H. Hardin_, Apr 18 2018