cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303114 Array read by antidiagonals: T(m,n) = number of total dominating sets in the n X m king graph.

This page as a plain text file.
%I A303114 #7 Feb 16 2025 08:33:54
%S A303114 0,1,1,3,11,3,4,47,47,4,5,165,353,165,5,9,625,2545,2545,625,9,16,2435,
%T A303114 19651,35458,19651,2435,16,25,9367,150719,538977,538977,150719,9367,
%U A303114 25,39,35901,1149593,8213971,16322279,8213971,1149593,35901,39
%N A303114 Array read by antidiagonals: T(m,n) = number of total dominating sets in the n X m king graph.
%H A303114 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KingGraph.html">King Graph</a>
%H A303114 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TotalDominatingSet.html">Total Dominating Set</a>
%e A303114 Table begins:
%e A303114 ============================================================================
%e A303114 m\n|  1    2       3         4           5             6               7
%e A303114 ---|------------------------------------------------------------------------
%e A303114 1  |  0    1       3         4           5             9              16 ...
%e A303114 2  |  1   11      47       165         625          2435            9367 ...
%e A303114 3  |  3   47     353      2545       19651        150719         1149593 ...
%e A303114 4  |  4  165    2545     35458      538977       8213971       124153394 ...
%e A303114 5  |  5  625   19651    538977    16322279     496873689     14980146565 ...
%e A303114 6  |  9 2435  150719   8213971   496873689   30158547693   1812834702647 ...
%e A303114 7  | 16 9367 1149593 124153394 14980146565 1812834702647 217221533288240 ...
%e A303114 ...
%Y A303114 Rows 1..2 are A195971(n-1), A219079.
%Y A303114 Main diagonal is A303116.
%Y A303114 Cf. A218663 (dominating sets), A291873 (connected dominating sets).
%Y A303114 Cf. A303111 (grid graph).
%K A303114 nonn,tabl
%O A303114 1,4
%A A303114 _Andrew Howroyd_, Apr 18 2018