cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303117 a(n) is the number of cyclic permutations with at most two descents.

This page as a plain text file.
%I A303117 #20 May 18 2018 20:38:51
%S A303117 1,1,1,2,6,18,62,186,570,1680,4890,14058,40200,114450,325230,923846,
%T A303117 2624730,7465410,21260652,60647370,173288724,496014934,1422211494,
%U A303117 4084793082,11751102060,33857989968,97696908330,282295318536,816759712080,2366027865810,6861963548198,19922800783578,57902584654650
%N A303117 a(n) is the number of cyclic permutations with at most two descents.
%C A303117 The number of cyclic permutations with at most 2 descents is equal to L(3,n)-n*L(2,n) where L(k,n) is the number of primitive necklaces (equivalently, the number of Lyndon words) of length n on k letters.
%H A303117 I. M. Gessel and C. Reutenauer, <a href="http://dx.doi.org/10.1016/0097-3165(93)90095-P">Counting permutations with given cycle structure and descent set</a>, J. Combin. Theory, Ser. A, 64, 189-215, (1993).
%F A303117 a(n) = A027376(n) - n*A001037(n).
%F A303117 a(n) = L(3,n)-n*L(2,n) where L(k,n) is the number of primitive k-ary necklaces (or equivalently, Lyndon words) of length n.
%o A303117 (PARI) L2(n) = if(n>1, sumdiv(n, d, moebius(d)*2^(n/d))/n, n+1); \\ A001037
%o A303117 L3(n) = if(n<1, n==0, sumdiv(n, d, moebius(n/d)*3^d)/n);  \\ A027376
%o A303117 a(n) = L3(n)-n*L2(n); \\ _Michel Marcus_, May 17 2018
%Y A303117 Cf. A027376, A001037.
%K A303117 nonn
%O A303117 0,4
%A A303117 _Kassie Archer_, Apr 18 2018