cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303123 Numbers whose sum of divisors is the square of one of their divisors.

This page as a plain text file.
%I A303123 #33 Jun 05 2020 04:17:23
%S A303123 1,364,1080,1782,8736,30256,86800,90768,149856,632400,828816,1033560,
%T A303123 2467600,8182944,9587160,10593720,12239136,15487600,16702800,23194080,
%U A303123 23556960,25371360,33330528,35746920,35889480,36036000,40753440,44013120,45890208,46462800,49035168
%N A303123 Numbers whose sum of divisors is the square of one of their divisors.
%C A303123 Subset of A090777 and A300906.
%C A303123 From _Robert Israel_, May 10 2018: (Start)
%C A303123 If m and n are coprime members of the sequence, then m*n is in the sequence.
%C A303123 However, it is not clear whether there are such m and n where neither is 1: in particular, are there odd members other than 1?
%C A303123 Any odd member > 1 is a square greater than 10^14. (End)
%H A303123 Giovanni Resta, <a href="/A303123/b303123.txt">Table of n, a(n) for n = 1..900</a> (terms < 10^13)
%e A303123 Divisors of 364 are 1, 2, 4, 7, 13, 14, 26, 28, 52, 91, 182, 364 and their sum is 784 = 28^2.
%p A303123 with(numtheory): P:=proc(q) local a,k,n;
%p A303123 for n from 1 to q do a:=sort([op(divisors(n))]);
%p A303123 for k from 1 to nops(a) do if sigma(n)=a[k]^2 then print(n); break;
%p A303123 fi; od; od; end: P(10^9);
%p A303123 # Alternative:
%p A303123 filter:= proc(n) local s;
%p A303123   s:= numtheory:-sigma(n);
%p A303123   issqr(s) and n^2 mod s = 0
%p A303123 end proc:
%p A303123 select(filter, [$1..10^7]); # _Robert Israel_, May 10 2018
%t A303123 Reap[For[k = 1, k <= 10^7, k++, If[AnyTrue[Divisors[k], DivisorSigma[1, k] == #^2&], Print[k]; Sow[k]]]][[2, 1]] (* _Jean-François Alcover_, Jun 05 2020 *)
%o A303123 (PARI) isok(n) = (s = sigma(n)) && issquare(s) && !(n % sqrtint(s)); \\ _Michel Marcus_, May 04 2018
%Y A303123 Cf. A000203, A090777, A300906, A303993, A303994, A303995, A303996.
%K A303123 nonn
%O A303123 1,2
%A A303123 _Paolo P. Lava_, May 04 2018