This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303124 #19 Apr 20 2018 08:42:30 %S A303124 1,4,40,1504,10336,387968,5349632,111442944,1100563968,36711258112, %T A303124 493805416448,9186633203712,134635599806464,2648342619422720, %U A303124 43443234834350080,938422838970810368,11378951438668791808,224791017150689574912,4129154423023897411584 %N A303124 Expansion of Product_{n>=1} (1 + (16*x)^n)^(1/4). %C A303124 This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1/4, g(n) = -16^n. %H A303124 Seiichi Manyama, <a href="/A303124/b303124.txt">Table of n, a(n) for n = 0..500</a> %F A303124 a(n) ~ 2^(4*n - 17/8) * exp(sqrt(n/3)*Pi/2) / (3^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Apr 19 2018 %t A303124 CoefficientList[Series[(QPochhammer[-1, 16*x]/2)^(1/4), {x, 0, 20}], %t A303124 x] (* _Vaclav Kotesovec_, Apr 19 2018 *) %o A303124 (PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (1+(16*x)^k)^(1/4))) %Y A303124 Expansion of Product_{n>=1} (1 + ((b^2)*x)^n)^(1/b): A000009 (b=1), A298994 (b=2), A303074 (b=3), this sequence (b=4), A303125 (b=5). %Y A303124 Cf. A303131, A303153. %K A303124 nonn %O A303124 0,2 %A A303124 _Seiichi Manyama_, Apr 19 2018