cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303124 Expansion of Product_{n>=1} (1 + (16*x)^n)^(1/4).

This page as a plain text file.
%I A303124 #19 Apr 20 2018 08:42:30
%S A303124 1,4,40,1504,10336,387968,5349632,111442944,1100563968,36711258112,
%T A303124 493805416448,9186633203712,134635599806464,2648342619422720,
%U A303124 43443234834350080,938422838970810368,11378951438668791808,224791017150689574912,4129154423023897411584
%N A303124 Expansion of Product_{n>=1} (1 + (16*x)^n)^(1/4).
%C A303124 This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1/4, g(n) = -16^n.
%H A303124 Seiichi Manyama, <a href="/A303124/b303124.txt">Table of n, a(n) for n = 0..500</a>
%F A303124 a(n) ~ 2^(4*n - 17/8) * exp(sqrt(n/3)*Pi/2) / (3^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Apr 19 2018
%t A303124 CoefficientList[Series[(QPochhammer[-1, 16*x]/2)^(1/4), {x, 0, 20}],
%t A303124 x] (* _Vaclav Kotesovec_, Apr 19 2018 *)
%o A303124 (PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (1+(16*x)^k)^(1/4)))
%Y A303124 Expansion of Product_{n>=1} (1 + ((b^2)*x)^n)^(1/b): A000009 (b=1), A298994 (b=2), A303074 (b=3), this sequence (b=4), A303125 (b=5).
%Y A303124 Cf. A303131, A303153.
%K A303124 nonn
%O A303124 0,2
%A A303124 _Seiichi Manyama_, Apr 19 2018