cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303125 Expansion of Product_{n>=1} (1 + (25*x)^n)^(1/5).

This page as a plain text file.
%I A303125 #17 Apr 20 2018 08:40:54
%S A303125 1,5,75,4500,43125,2765000,55871875,1876671875,25128437500,
%T A303125 1495793359375,28953471875000,871257974609375,18280647500000000,
%U A303125 596362168603515625,14502797130615234375,519397373566650390625,8604439235863037109375
%N A303125 Expansion of Product_{n>=1} (1 + (25*x)^n)^(1/5).
%C A303125 This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1/5, g(n) = -25^n.
%H A303125 Seiichi Manyama, <a href="/A303125/b303125.txt">Table of n, a(n) for n = 0..500</a>
%F A303125 a(n) ~ 5^(2*n - 1/4) * exp(Pi*sqrt(n/15)) / (2^(8/5) * 3^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Apr 19 2018
%t A303125 CoefficientList[Series[(QPochhammer[-1, 25*x]/2)^(1/5), {x, 0, 20}],
%t A303125 x] (* _Vaclav Kotesovec_, Apr 19 2018 *)
%o A303125 (PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (1+(25*x)^k)^(1/5)))
%Y A303125 Expansion of Product_{n>=1} (1 + ((b^2)*x)^n)^(1/b): A000009 (b=1), A298994 (b=2), A303074 (b=3), A303124 (b=4), this sequence (b=5).
%Y A303125 Cf. A303132, A303154.
%K A303125 nonn
%O A303125 0,2
%A A303125 _Seiichi Manyama_, Apr 19 2018