A303138 Regular triangle where T(n,k) is the number of strict integer partitions of n with greatest common divisor k.
1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 2, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 4, 0, 0, 0, 0, 0, 1, 4, 1, 0, 0, 0, 0, 0, 1, 6, 0, 1, 0, 0, 0, 0, 0, 1, 7, 2, 0, 0, 0, 0, 0, 0, 0, 1, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 10, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 17, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 23, 0, 2, 0, 1
Offset: 1
Examples
Triangle begins: 01: 1 02: 0 1 03: 1 0 1 04: 1 0 0 1 05: 2 0 0 0 1 06: 2 1 0 0 0 1 07: 4 0 0 0 0 0 1 08: 4 1 0 0 0 0 0 1 09: 6 0 1 0 0 0 0 0 1 10: 7 2 0 0 0 0 0 0 0 1 11: 11 0 0 0 0 0 0 0 0 0 1 12: 10 2 1 1 0 0 0 0 0 0 0 1 13: 17 0 0 0 0 0 0 0 0 0 0 0 1 14: 17 4 0 0 0 0 0 0 0 0 0 0 0 1 15: 23 0 2 0 1 0 0 0 0 0 0 0 0 0 1 The strict partitions counted in row 12 are the following. T(12,1) = 10: (11,1) (9,2,1) (8,3,1) (7,5) (7,4,1) (7,3,2) (6,5,1) (6,3,2,1) (5,4,3) (5,4,2,1) T(12,2) = 2: (10,2) (6,4,2) T(12,3) = 1: (9,3) T(12,4) = 1: (8,4) T(12,12) = 1: (12)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&GCD@@#===k&]],{n,15},{k,n}]
Formula
If k divides n, T(n,k) = A078374(n/k); otherwise T(n,k) = 0.