cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303152 Expansion of Product_{n>=1} (1 - (9*x)^n)^(1/3).

This page as a plain text file.
%I A303152 #13 Apr 20 2018 10:06:39
%S A303152 1,-3,-36,-207,-2214,-2754,-138591,547722,-3730293,30138075,133709535,
%T A303152 7735237479,-35284817430,702841889322,3056530613769,9493893988155,
%U A303152 112554319443867,3822223052352735,-3940051663965051,250298859930263181,-551418001934739786,1061747224529191191
%N A303152 Expansion of Product_{n>=1} (1 - (9*x)^n)^(1/3).
%C A303152 This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1/3, g(n) = 9^n.
%H A303152 Seiichi Manyama, <a href="/A303152/b303152.txt">Table of n, a(n) for n = 0..1000</a>
%o A303152 (PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-(9*x)^k)^(1/3)))
%Y A303152 Expansion of Product_{n>=1} (1 - ((b^2)*x)^n)^(1/b): A010815 (b=1), A298411 (b=2), this sequence (b=3), A303153 (b=4), A303154 (b=5).
%Y A303152 Cf. A271236, A303074.
%K A303152 sign
%O A303152 0,2
%A A303152 _Seiichi Manyama_, Apr 19 2018