cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303153 Expansion of Product_{n>=1} (1 - (16*x)^n)^(1/4).

This page as a plain text file.
%I A303153 #14 Apr 20 2018 08:43:23
%S A303153 1,-4,-88,-992,-19360,-97152,-4296448,4539392,-568015360,-127621120,
%T A303153 -39357927424,2424998313984,-38804685471744,799759166930944,
%U A303153 4879962868940800,41563181340426240,585185165832486912,55834295603426754560,-75535223925056208896
%N A303153 Expansion of Product_{n>=1} (1 - (16*x)^n)^(1/4).
%C A303153 This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1/4, g(n) = 16^n.
%H A303153 Seiichi Manyama, <a href="/A303153/b303153.txt">Table of n, a(n) for n = 0..500</a>
%o A303153 (PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-(16*x)^k)^(1/4)))
%Y A303153 Expansion of Product_{n>=1} (1 - ((b^2)*x)^n)^(1/b): A010815 (b=1), A298411 (b=2), A303152 (b=3), this sequence (b=4), A303154 (b=5).
%Y A303153 Cf. A303124, A303135.
%K A303153 sign
%O A303153 0,2
%A A303153 _Seiichi Manyama_, Apr 19 2018