cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303168 Expansion of Product_{k>=1} 1/(1 - x^(k^3))^k.

This page as a plain text file.
%I A303168 #4 Apr 19 2018 15:12:51
%S A303168 1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,10,10,10,13,13,13,13,
%T A303168 13,18,18,18,24,24,24,24,24,30,30,30,39,39,39,39,39,46,46,46,58,58,58,
%U A303168 64,64,72,72,72,87,87,87,99,99,112,112,112,130,130,130,148,148,166,166,166,187
%N A303168 Expansion of Product_{k>=1} 1/(1 - x^(k^3))^k.
%C A303168 Number of partitions of n into 1 kind of part 1, 2 kinds of part 8, 3 kinds of part 27, ..., k kinds of part k^3.
%H A303168 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%H A303168 <a href="/index/Su#ssq">Index entries for sequences related to sums of cubes</a>
%F A303168 G.f.: Product_{k>=1} 1/(1 - x^A000578(k))^k.
%t A303168 nmax = 75; CoefficientList[Series[Product[1/(1 - x^k^3)^k, {k, 1, nmax}], {x, 0, nmax}], x]
%Y A303168 Cf. A000219, A000578, A003108, A023872, A285047, A291720, A298434, A300975.
%K A303168 nonn
%O A303168 0,9
%A A303168 _Ilya Gutkovskiy_, Apr 19 2018