This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303173 #7 Aug 21 2018 07:41:40 %S A303173 1,-1,0,4,-7,0,13,10,-92,21,720,-2019,1193,6281,-18054,16111,11059, %T A303173 -14653,-57685,-86620,1281406,-3454742,2383734,9409968,-30397071, %U A303173 43327680,-56130326,128981571,-73487834,-1219918457,5059678044,-7826243881,-4131571113,38850603452 %N A303173 a(n) = [x^n] Product_{k=1..n} (1 - x^k)^(n-k+1). %H A303173 Vaclav Kotesovec, <a href="/A303173/b303173.txt">Table of n, a(n) for n = 0..500</a> %e A303173 a(0) = 1; %e A303173 a(1) = [x^1] (1 - x) = -1; %e A303173 a(2) = [x^2] (1 - x)^2*(1 - x^2) = 0; %e A303173 a(3) = [x^3] (1 - x)^3*(1 - x^2)^2*(1 - x^3) = 4; %e A303173 a(4) = [x^4] (1 - x)^4*(1 - x^2)^3*(1 - x^3)^2*(1 - x^4) = -7; %e A303173 a(5) = [x^5] (1 - x)^5*(1 - x^2)^4*(1 - x^3)^3*(1 - x^4)^2*(1 - x^5) = 0, etc. %e A303173 ... %e A303173 The table of coefficients of x^k in expansion of Product_{k=1..n} (1 - x^k)^(n-k+1) begins: %e A303173 n = 0: (1), 0, 0, 0, 0, 0, ... %e A303173 n = 1: 1, (-1), 0, 0, 0, 0, ... %e A303173 n = 2: 1, -2, (0), 2, -1, 0, ... %e A303173 n = 3: 1, -3, 1, (4), -2, -2, ... %e A303173 n = 4: 1, -4, 3, 6, (-7), -2, ... %e A303173 n = 5: 1, -5, 6, 7, -16, (0), ... %t A303173 Table[SeriesCoefficient[Product[(1 - x^k)^(n - k + 1), {k, 1, n}], {x, 0, n}], {n, 0, 33}] %Y A303173 Cf. A008705, A073592, A206228, A206229, A303174. %K A303173 sign %O A303173 0,4 %A A303173 _Ilya Gutkovskiy_, Apr 19 2018