This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303174 #9 Aug 21 2018 10:53:14 %S A303174 1,-1,2,-5,18,-60,189,-601,1967,-6544,21872,-73247,246080,-829924, %T A303174 2808357,-9527485,32389671,-110316862,376372802,-1286063899, %U A303174 4400499380,-15075608840,51704898623,-177513230200,610007283817,-2098029341745,7221561430933,-24875274224531 %N A303174 a(n) = [x^n] Product_{k=1..n} 1/(1 + x^k)^(n-k+1). %H A303174 Vaclav Kotesovec, <a href="/A303174/b303174.txt">Table of n, a(n) for n = 0..500</a> %F A303174 a(n) ~ (-1)^n * c * d^n / sqrt(n), where d = A318204 = 3.50975432794970334043727352337... and c = 0.2457469629428839220188283... - _Vaclav Kotesovec_, Aug 21 2018 %e A303174 a(0) = 1; %e A303174 a(1) = [x^1] 1/(1 + x) = -1; %e A303174 a(2) = [x^2] 1/((1 + x)^2*(1 + x^2)) = 2; %e A303174 a(3) = [x^3] 1/((1 + x)^3*(1 + x^2)^2*(1 + x^3)) = -5; %e A303174 a(4) = [x^4] 1/((1 + x)^4*(1 + x^2)^3*(1 + x^3)^2*(1 + x^4)) = 18; %e A303174 a(5) = [x^5] 1/((1 + x)^5*(1 + x^2)^4*(1 + x^3)^3*(1 + x^4)^2*(1 + x^5)) = -60, etc. %e A303174 ... %e A303174 The table of coefficients of x^k in expansion of Product_{k=1..n} 1/(1 + x^k)^(n-k+1) begins: %e A303174 n = 0: (1), 0, 0, 0, 0, 0, ... %e A303174 n = 1: 1, (-1), 1, -1, 1, -1, ... %e A303174 n = 2: 1, -2, (2), -2, 3, -4, ... %e A303174 n = 3: 1, -3, 4, (-5), 9, -14, ... %e A303174 n = 4: 1, -4, 7, -10, (18), -30, ... %e A303174 n = 5: 1, -5, 11, -18, 33, (-60), ... %t A303174 Table[SeriesCoefficient[Product[1/(1 + x^k)^(n - k + 1), {k, 1, n}], {x, 0, n}], {n, 0, 27}] %Y A303174 Cf. A206228, A206229, A255526, A255528, A303173. %K A303174 sign %O A303174 0,3 %A A303174 _Ilya Gutkovskiy_, Apr 19 2018