This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303188 #8 Aug 21 2018 08:04:48 %S A303188 1,1,1,7,9,23,148,221,526,1040,6767,9664,23456,43943,91363,499028, %T A303188 736410,1650395,3107540,6210372,10819270,57864166,80663444,179915133, %U A303188 324882691,640398244,1087149284,2039724322,9121580902,12913282685,27250167385,48645989650,92634730208,156124357449 %N A303188 a(n) = [x^n] Product_{k=1..n} (1 + (n - k + 1)*x^k). %H A303188 Vaclav Kotesovec, <a href="/A303188/b303188.txt">Table of n, a(n) for n = 0..500</a> %e A303188 a(0) = 1; %e A303188 a(1) = [x^1] (1 + x) = 1; %e A303188 a(2) = [x^2] (1 + 2*x)*(1 + x^2) = 1; %e A303188 a(3) = [x^3] (1 + 3*x)*(1 + 2*x^2)*(1 + x^3) = 7; %e A303188 a(4) = [x^4] (1 + 4*x)*(1 + 3*x^2)*(1 + 2*x^3)*(1 + x^4) = 9; %e A303188 a(5) = [x^5] (1 + 5*x)*(1 + 4*x^2)*(1 + 3*x^3)*(1 + 2*x^4)*(1 + x^5) = 23, etc. %e A303188 ... %e A303188 The table of coefficients of x^k in expansion of Product_{k=1..n} (1 + (n - k + 1)*x^k) begins: %e A303188 n = 0: (1), 0, 0, 0, 0, 0, ... %e A303188 n = 1: 1, (1), 0, 0, 0, 0, ... %e A303188 n = 2: 1, 2, (1), 2, 0, 0 ... %e A303188 n = 3: 1, 3, 2, (7), 3, 2, ... %e A303188 n = 4: 1, 4, 3, 14, (9), 10, ... %e A303188 n = 5: 1, 5, 4, 23, 17, (23), ... %t A303188 Table[SeriesCoefficient[Product[(1 + (n - k + 1) x^k), {k, 1, n}], {x, 0, n}], {n, 0, 33}] %Y A303188 Cf. A022629, A206229, A291698, A303175, A303189, A303190. %K A303188 nonn %O A303188 0,4 %A A303188 _Ilya Gutkovskiy_, Apr 19 2018