cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303190 a(n) = [x^n] Product_{k=1..n} 1/(1 + (n - k + 1)*x^k).

This page as a plain text file.
%I A303190 #8 Aug 22 2018 06:12:54
%S A303190 1,-1,3,-22,224,-2759,41629,-743319,15285861,-355719616,9242332881,
%T A303190 -265191971970,8328195163545,-284124989856012,10463788330880961,
%U A303190 -413744821089831397,17482192791456272614,-786119610413822514764,37482612103603819839034,-1888918995730788198553380
%N A303190 a(n) = [x^n] Product_{k=1..n} 1/(1 + (n - k + 1)*x^k).
%H A303190 Vaclav Kotesovec, <a href="/A303190/b303190.txt">Table of n, a(n) for n = 0..384</a>
%F A303190 a(n) ~ (-1)^n * n^n * (1 - 1/n + 3/n^2 - 7/n^3 + 15/n^4 - 32/n^5 + 65/n^6 - 131/n^7 + 260/n^8 - 501/n^9 + 965/n^10 - 1825/n^11 + 3419/n^12 - 6326/n^13 + 11652/n^14 - 21230/n^15 + 38405/n^16 - 69015/n^17 + 123334/n^18 - 218980/n^19 + 386809/n^20 - 679757/n^21 + 1189360/n^22 - 2071761/n^23 + 3594325/n^24 - 6211826/n^25 + 10698409/n^26 - 18363038/n^27 + 31420994/n^28 - 53605525/n^29 + 91198970/n^30 - ...). - _Vaclav Kotesovec_, Aug 22 2018
%e A303190 a(0) = 1;
%e A303190 a(1) = [x^1] 1/(1 + x) = -1;
%e A303190 a(2) = [x^2] 1/((1 + 2*x)*(1 + x^2)) = 3;
%e A303190 a(3) = [x^3] 1/((1 + 3*x)*(1 + 2*x^2)*(1 + x^3)) = -22;
%e A303190 a(4) = [x^4] 1/((1 + 4*x)*(1 + 3*x^2)*(1 + 2*x^3)*(1 + x^4)) = 224;
%e A303190 a(5) = [x^5] 1/((1 + 5*x)*(1 + 4*x^2)*(1 + 3*x^3)*(1 + 2*x^4)*(1 + x^5)) = -2759, etc.
%e A303190 ...
%e A303190 The table of coefficients of x^k in expansion of Product_{k=1..n} 1/(1 + (n - k + 1)*x^k) begins:
%e A303190 n = 0: (1),  0,   0,     0,    0,      0,  ...
%e A303190 n = 1:  1, (-1),  1,    -1,    1,     -1,  ...
%e A303190 n = 2:  1,  -2,  (3),   -6,   13,    -26,  ...
%e A303190 n = 3:  1,  -3,   7,  (-22),  70,   -208,  ...
%e A303190 n = 4:  1,  -4,  13,   -54, (224),  -890,  ...
%e A303190 n = 5:  1,  -5,  21,  -108,  554, (-2759), ...
%t A303190 Table[SeriesCoefficient[Product[1/(1 + (n - k + 1) x^k), {k, 1, n}], {x, 0, n}], {n, 0, 19}]
%Y A303190 Cf. A022693, A292134, A303174, A303175, A303188, A303189.
%K A303190 sign
%O A303190 0,3
%A A303190 _Ilya Gutkovskiy_, Apr 19 2018