cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303193 Number of nX4 0..1 arrays with every element equal to 0, 1, 3, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

This page as a plain text file.
%I A303193 #4 Apr 19 2018 13:33:59
%S A303193 5,17,23,46,185,497,1357,4207,12167,34473,102325,299504,863917,
%T A303193 2529911,7401255,21512919,62790998,183429084,534568781,1559375192,
%U A303193 4551720900,13275818353,38726475676,113002176247,329660705673,961703508351
%N A303193 Number of nX4 0..1 arrays with every element equal to 0, 1, 3, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
%C A303193 Column 4 of A303197.
%H A303193 R. H. Hardin, <a href="/A303193/b303193.txt">Table of n, a(n) for n = 1..210</a>
%F A303193 Empirical: a(n) = 2*a(n-1) +2*a(n-2) +12*a(n-3) -16*a(n-4) -31*a(n-5) -40*a(n-6) +26*a(n-7) +53*a(n-8) +50*a(n-9) +35*a(n-10) +7*a(n-11) +a(n-12) -66*a(n-13) +111*a(n-14) +160*a(n-15) -144*a(n-16) -293*a(n-17) -37*a(n-18) +236*a(n-19) -90*a(n-20) -395*a(n-21) -6*a(n-22) +127*a(n-23) -242*a(n-24) -440*a(n-25) -17*a(n-26) +448*a(n-27) +310*a(n-28) +44*a(n-29) +97*a(n-30) +113*a(n-31) -8*a(n-32) -125*a(n-33) -100*a(n-34) -26*a(n-35) -a(n-36) +15*a(n-37) +10*a(n-38) +9*a(n-39) -a(n-41) -a(n-42) for n>43
%e A303193 Some solutions for n=5
%e A303193 ..0..1..0..1. .0..1..0..1. .0..1..1..0. .0..1..0..1. .0..1..0..1
%e A303193 ..0..1..0..1. .0..1..0..1. .0..1..0..1. .0..0..0..1. .0..1..1..1
%e A303193 ..0..0..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1
%e A303193 ..0..1..1..1. .0..1..1..1. .0..1..1..1. .0..1..1..1. .0..1..0..1
%e A303193 ..0..1..0..1. .0..1..0..0. .0..0..0..1. .0..0..0..1. .0..0..1..1
%Y A303193 Cf. A303197.
%K A303193 nonn
%O A303193 1,1
%A A303193 _R. H. Hardin_, Apr 19 2018