This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303199 #4 Apr 19 2018 13:40:26 %S A303199 8,10,23,46,97,283,687,1642,3949,10169,25010,60900,149264,373120, %T A303199 920574,2259062,5562698,13784985,34019145,83759406,206523981, %U A303199 510324559,1259274155,3104524302,7657989177,18904333224,46644705875,115050987507 %N A303199 Number of 4Xn 0..1 arrays with every element equal to 0, 1, 3, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero. %C A303199 Row 4 of A303197. %H A303199 R. H. Hardin, <a href="/A303199/b303199.txt">Table of n, a(n) for n = 1..210</a> %F A303199 Empirical: a(n) = a(n-1) +3*a(n-2) +2*a(n-3) +28*a(n-4) -31*a(n-5) -90*a(n-6) -44*a(n-7) -283*a(n-8) +376*a(n-9) +1008*a(n-10) +311*a(n-11) +1386*a(n-12) -2347*a(n-13) -6108*a(n-14) -872*a(n-15) -3347*a(n-16) +8856*a(n-17) +23769*a(n-18) -123*a(n-19) +1195*a(n-20) -22117*a(n-21) -64764*a(n-22) +7147*a(n-23) +19461*a(n-24) +38840*a(n-25) +127932*a(n-26) -21682*a(n-27) -74830*a(n-28) -50864*a(n-29) -183540*a(n-30) +36739*a(n-31) +157510*a(n-32) +54333*a(n-33) +187390*a(n-34) -42853*a(n-35) -222777*a(n-36) -53364*a(n-37) -129121*a(n-38) +39540*a(n-39) +223618*a(n-40) +49370*a(n-41) +50470*a(n-42) -32833*a(n-43) -162219*a(n-44) -37859*a(n-45) +76*a(n-46) +24074*a(n-47) +85250*a(n-48) +21014*a(n-49) -12817*a(n-50) -13251*a(n-51) -31994*a(n-52) -7827*a(n-53) +7830*a(n-54) +4713*a(n-55) +8220*a(n-56) +1874*a(n-57) -2410*a(n-58) -960*a(n-59) -1329*a(n-60) -278*a(n-61) +404*a(n-62) +95*a(n-63) +116*a(n-64) +24*a(n-65) -33*a(n-66) -3*a(n-67) -4*a(n-68) -a(n-69) +a(n-70) for n>71 %e A303199 Some solutions for n=5 %e A303199 ..0..0..1..1..0. .0..1..0..0..0. .0..1..0..1..0. .0..1..0..0..1 %e A303199 ..0..1..0..1..0. .0..1..0..1..1. .0..1..0..1..0. .1..1..0..1..0 %e A303199 ..0..1..0..1..0. .0..0..1..0..1. .1..1..0..1..0. .0..1..0..1..0 %e A303199 ..0..1..0..0..1. .1..1..1..0..1. .0..1..0..0..1. .0..1..0..0..1 %Y A303199 Cf. A303197. %K A303199 nonn %O A303199 1,1 %A A303199 _R. H. Hardin_, Apr 19 2018