This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303204 #12 Aug 30 2021 07:55:17 %S A303204 1,1,1,2,5,12,36,98,327,988,3392,10872,38795,129520,469662,1609176, %T A303204 5935728,20786804,77416352,274792342,1035050705,3719296036, %U A303204 14094000938,51119572738,195075365778,712918642042,2734475097609,10055531355652,38747262233793 %N A303204 Number of permutations p of [n] such that 0p has a nonincreasing jump sequence beginning with ceiling(n/2). %C A303204 An up-jump j occurs at position i in p if p_{i} > p_{i-1} and j is the index of p_i in the increasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are larger than p_{i-1}. A down-jump j occurs at position i in p if p_{i} < p_{i-1} and j is the index of p_i in the decreasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are smaller than p_{i-1}. First index in the lists is 1 here. %H A303204 Alois P. Heinz, <a href="/A303204/b303204.txt">Table of n, a(n) for n = 0..500</a> %F A303204 a(n) = A291684(n,ceiling(n/2)). %p A303204 b:= proc(u, o, t) option remember; `if`(u+o=0, 1, %p A303204 add(b(sort([u-j, o+j-1])[], j), j=1..min(t, u))+ %p A303204 add(b(sort([u+j-1, o-j])[], j), j=1..min(t, o))) %p A303204 end: %p A303204 a:= n-> `if`(n=0, 1, (j-> b(0, n, j)-b(0, n, j-1))(ceil(n/2))): %p A303204 seq(a(n), n=0..30); %t A303204 b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, %t A303204 Sum[b[Sequence @@ Sort[{u-j, o+j-1}], j], {j, Min[t, u]}]+ %t A303204 Sum[b[Sequence @@ Sort[{u+j-1, o-j}], j], {j, Min[t, o]}]]; %t A303204 a[n_] := If[n == 0, 1, %t A303204 Function[j, b[0, n, j] - b[0, n, j-1]][Ceiling[n/2]]]; %t A303204 Table[a[n], {n, 0, 30}]; (* _Jean-François Alcover_, Aug 30 2021, after _Alois P. Heinz_ *) %Y A303204 Bisections give A291688 (even part), A303203 (odd part). %Y A303204 Cf. A291684. %K A303204 nonn %O A303204 0,4 %A A303204 _Alois P. Heinz_, Apr 19 2018