cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303211 Number of minimum total dominating sets in the n X n rook graph.

This page as a plain text file.
%I A303211 #26 Jun 10 2025 15:57:08
%S A303211 0,4,6,80,410,5112,48818,695424,9589266,162327800,2869193162,
%T A303211 57451559904,1225220612954,28560612445848,709917843398850,
%U A303211 18943086191785472,536695850359985186,16151064034012994808,513345798896635886906,17206881800061632191200
%N A303211 Number of minimum total dominating sets in the n X n rook graph.
%H A303211 Andrew Howroyd, <a href="/A303211/b303211.txt">Table of n, a(n) for n = 1..200</a>
%H A303211 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MinimumTotalDominatingSet.html">Minimum Total Dominating Set</a>.
%H A303211 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RookGraph.html">Rook Graph</a>.
%F A303211 a(n) = Sum_{k=0,..n} (-1)^k*binomial(n,k)^2*k!*(2*(n-k)^(n-k) - (n-k)!). - _Andrew Howroyd_, Apr 20 2018
%F A303211 a(n) ~ 2 * (exp(1) - 1)^(n + 1/2) * n^n / exp(n + 1/2). - _Vaclav Kotesovec_, Apr 20 2018
%t A303211 Table[(-1)^n n! + Sum[(-1)^k Binomial[n, k]^2 k! (2 (n - k)^(n - k) - (n - k)!), {k, 0, n - 1}], {n, 20}]
%t A303211 2 Table[(-1)^n n! + Sum[(-1)^k Binomial[n, k]^2 k! (n - k)^(n - k), {k, 0, n - 1}], {n, 20}] (* _Eric W. Weisstein_, Jan 18 2019 *)
%o A303211 (PARI) a(n) = {sum(k=0, n, (-1)^k*binomial(n,k)^2*k!*(2*(n-k)^(n-k) - (n-k)!))} \\ _Andrew Howroyd_, Apr 20 2018
%Y A303211 Main diagonal of A384117.
%Y A303211 Cf. A248744, A303208, A347921.
%K A303211 nonn
%O A303211 1,2
%A A303211 _Eric W. Weisstein_, Apr 19 2018
%E A303211 Terms a(6) and beyond from _Andrew Howroyd_, Apr 20 2018