This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303218 #23 Feb 05 2021 14:29:40 %S A303218 2,21,3,610,34,5,6765,987,55,8,832040,46368,2584,144,13,102334155, %T A303218 14930352,196418,10946,377,89,190392490709135,4807526976,267914296, %U A303218 317811,3524578,4181,233,1548008755920,37889062373143906,86267571272,701408733,2178309,9227465,17711,1597 %N A303218 A(n,k) is the n-th Fibonacci number with exactly k distinct prime factors; square array A(n,k), n>=1, k>=1, read by antidiagonals. %H A303218 Alois P. Heinz, <a href="/A303218/b303218.txt">Antidiagonals n = 1..18, flattened</a> %F A303218 A(n,k) = A000045(A303217(n,k)). %F A303218 A001221(A(n,k)) = k. %e A303218 Square array A(n,k) begins: %e A303218 2, 21, 610, 6765, 832040, 102334155, ... %e A303218 3, 34, 987, 46368, 14930352, 4807526976, ... %e A303218 5, 55, 2584, 196418, 267914296, 86267571272, ... %e A303218 8, 144, 10946, 317811, 701408733, 225851433717, ... %e A303218 13, 377, 3524578, 2178309, 1134903170, 10610209857723, ... %e A303218 89, 4181, 9227465, 32951280099, 12586269025, 8944394323791464, ... %p A303218 F:= combinat[fibonacci]: with(numtheory): %p A303218 A:= proc() local h, p, q; p, q:= proc() [] end, 2; %p A303218 proc(n, k) %p A303218 while nops(p(k))<n do q:= q+1; %p A303218 h:= nops(factorset(F(q))); %p A303218 p(h):= [p(h)[], F(q)] %p A303218 od; p(k)[n] %p A303218 end %p A303218 end(): %p A303218 seq(seq(A(n, 1+d-n), n=1..d), d=1..12); %t A303218 nmax = 12(*rows*); %t A303218 maxIndex = 200; (* increase if message "part does not exist" *) %t A303218 nu[n_] := nu[n] = PrimeNu[Fibonacci[n]]; %t A303218 col[k_] := Select[Range[maxIndex], nu[#] == k &]; %t A303218 T = Array[col, nmax]; %t A303218 A[n_, k_] := Fibonacci[T[[k, n]]]; %t A303218 Table[A[n-k+1, k], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* _Jean-François Alcover_, Feb 05 2021 *) %Y A303218 Column k=3 gives A137563. %Y A303218 Row n=1 gives: A060319. %Y A303218 Cf. A000045, A001221, A303216, A303217. %K A303218 nonn,tabl %O A303218 1,1 %A A303218 _Alois P. Heinz_, Apr 19 2018