cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303233 Number of ways to write n as a*(a+1)/2 + b*(b+1)/2 + 2^c + 2^d, where a,b,c,d are nonnegative integers with a <= b and c <= d.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 4, 6, 7, 7, 7, 9, 7, 8, 9, 9, 8, 12, 11, 11, 11, 11, 11, 14, 11, 13, 12, 11, 10, 14, 11, 12, 17, 15, 12, 16, 14, 15, 17, 19, 15, 16, 13, 15, 17, 17, 16, 20, 16, 14, 17, 17, 14, 22, 17, 14, 14, 17, 15, 19
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 20 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1. In other words, any integer n > 1 can be written as the sum of two triangular numbers and two powers of 2.
a(n) > 0 for all n = 2..10^9. See A303234 for numbers of the form x*(x+1)/2 + 2^y with x and y nonnegative integers. See also A303363 for a stronger conjecture.
In contrast, Crocker proved in 2008 that there are infinitely many positive integers not representable as the sum of two squares and at most two powers of 2.

Examples

			a(2) = 1 with 2 = 0*(0+1)/2 + 0*(0+1)/2 + 2^0 + 2^0.
a(3) = 2 with 3 = 0*(0+1)/2 + 1*(1+1)/2 + 2^0 + 2^0 = 0*(0+1)/2 + 0*(0+1)/2 + 2^0 + 2^1.
a(4) = 3 with 4 = 1*(1+1)/2 + 1*(1+1)/2 + 2^0 + 2^0 = 0*(0+1)/2 + 1*(1+1)/2 + 2^0 + 2^1 = 0*(0+1)/2 + 0*(0+1)/2 + 2^1 + 2^1.
		

References

  • R. C. Crocker, On the sum of two squares and two powers of k, Colloq. Math. 112(2008), 235-267.

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n],i],1],4]==3&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
    tab={};Do[r=0;Do[If[QQ[4(n-2^k-2^j)+1],Do[If[SQ[8(n-2^k-2^j-x(x+1)/2)+1],r=r+1],{x,0,(Sqrt[4(n-2^k-2^j)+1]-1)/2}]],{k,0,Log[2,n]-1},{j,k,Log[2,n-2^k]}];tab=Append[tab,r],{n,1,60}];Print[tab]