A303233 Number of ways to write n as a*(a+1)/2 + b*(b+1)/2 + 2^c + 2^d, where a,b,c,d are nonnegative integers with a <= b and c <= d.
0, 1, 2, 3, 4, 5, 4, 6, 7, 7, 7, 9, 7, 8, 9, 9, 8, 12, 11, 11, 11, 11, 11, 14, 11, 13, 12, 11, 10, 14, 11, 12, 17, 15, 12, 16, 14, 15, 17, 19, 15, 16, 13, 15, 17, 17, 16, 20, 16, 14, 17, 17, 14, 22, 17, 14, 14, 17, 15, 19
Offset: 1
Keywords
Examples
a(2) = 1 with 2 = 0*(0+1)/2 + 0*(0+1)/2 + 2^0 + 2^0. a(3) = 2 with 3 = 0*(0+1)/2 + 1*(1+1)/2 + 2^0 + 2^0 = 0*(0+1)/2 + 0*(0+1)/2 + 2^0 + 2^1. a(4) = 3 with 4 = 1*(1+1)/2 + 1*(1+1)/2 + 2^0 + 2^0 = 0*(0+1)/2 + 1*(1+1)/2 + 2^0 + 2^1 = 0*(0+1)/2 + 0*(0+1)/2 + 2^1 + 2^1.
References
- R. C. Crocker, On the sum of two squares and two powers of k, Colloq. Math. 112(2008), 235-267.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
- Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120.
- Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
Crossrefs
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; f[n_]:=f[n]=FactorInteger[n]; g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n],i],1],4]==3&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0; QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]); tab={};Do[r=0;Do[If[QQ[4(n-2^k-2^j)+1],Do[If[SQ[8(n-2^k-2^j-x(x+1)/2)+1],r=r+1],{x,0,(Sqrt[4(n-2^k-2^j)+1]-1)/2}]],{k,0,Log[2,n]-1},{j,k,Log[2,n-2^k]}];tab=Append[tab,r],{n,1,60}];Print[tab]
Comments