cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A303233 Number of ways to write n as a*(a+1)/2 + b*(b+1)/2 + 2^c + 2^d, where a,b,c,d are nonnegative integers with a <= b and c <= d.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 4, 6, 7, 7, 7, 9, 7, 8, 9, 9, 8, 12, 11, 11, 11, 11, 11, 14, 11, 13, 12, 11, 10, 14, 11, 12, 17, 15, 12, 16, 14, 15, 17, 19, 15, 16, 13, 15, 17, 17, 16, 20, 16, 14, 17, 17, 14, 22, 17, 14, 14, 17, 15, 19
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 20 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1. In other words, any integer n > 1 can be written as the sum of two triangular numbers and two powers of 2.
a(n) > 0 for all n = 2..10^9. See A303234 for numbers of the form x*(x+1)/2 + 2^y with x and y nonnegative integers. See also A303363 for a stronger conjecture.
In contrast, Crocker proved in 2008 that there are infinitely many positive integers not representable as the sum of two squares and at most two powers of 2.

Examples

			a(2) = 1 with 2 = 0*(0+1)/2 + 0*(0+1)/2 + 2^0 + 2^0.
a(3) = 2 with 3 = 0*(0+1)/2 + 1*(1+1)/2 + 2^0 + 2^0 = 0*(0+1)/2 + 0*(0+1)/2 + 2^0 + 2^1.
a(4) = 3 with 4 = 1*(1+1)/2 + 1*(1+1)/2 + 2^0 + 2^0 = 0*(0+1)/2 + 1*(1+1)/2 + 2^0 + 2^1 = 0*(0+1)/2 + 0*(0+1)/2 + 2^1 + 2^1.
		

References

  • R. C. Crocker, On the sum of two squares and two powers of k, Colloq. Math. 112(2008), 235-267.

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n],i],1],4]==3&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
    tab={};Do[r=0;Do[If[QQ[4(n-2^k-2^j)+1],Do[If[SQ[8(n-2^k-2^j-x(x+1)/2)+1],r=r+1],{x,0,(Sqrt[4(n-2^k-2^j)+1]-1)/2}]],{k,0,Log[2,n]-1},{j,k,Log[2,n-2^k]}];tab=Append[tab,r],{n,1,60}];Print[tab]

A303363 Number of ways to write n as a*(a+1)/2 + b*(b+1)/2 + 2^c + 2^d, where a,b,c,d are nonnegative integers with a <= b, c <= d and 2|c.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 2, 4, 6, 3, 5, 6, 4, 6, 7, 4, 4, 9, 6, 6, 8, 4, 9, 9, 5, 7, 7, 5, 7, 9, 4, 8, 13, 7, 6, 11, 7, 10, 13, 8, 9, 10, 7, 9, 11, 7, 9, 15, 8, 8, 14, 6, 9, 16, 6, 8, 11, 11, 10, 12, 8, 7, 15, 10, 8, 11, 9, 14, 15, 9
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 22 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1.
This is stronger than the author's conjecture in A303233. I have verified a(n) > 0 for all n = 2..10^9.
In contrast, Corcker proved in 2008 that there are infinitely many positive integers not representable as the sum of two squares and at most two powers of 2.

Examples

			a(2) = 1 with 2 = 0*(0+1)/2 + 0*(0+1)/2 + 2^0 + 2^0.
a(3) = 2 with 3 = 0*(0+1)/2 + 1*(1+1)/2 + 2^0 + 2^0 = 0*(0+1)/2 + 0*(0+1)/2 + 2^0 + 2^1.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n],i],1],4]==3&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
    tab={};Do[r=0;Do[If[QQ[4(n-4^j-2^k)+1],Do[If[SQ[8(n-4^j-2^k-x(x+1)/2)+1],r=r+1],{x,0,(Sqrt[4(n-4^j-2^k)+1]-1)/2}]],{j,0,Log[4,n/2]},{k,2j,Log[2,n-4^j]}];tab=Append[tab,r],{n,1,70}];Print[tab]

A303389 Number of ways to write n as a*(a+1)/2 + b*(b+1)/2 + 5^c + 5^d, where a,b,c,d are nonnegative integers with a <= b and c <= d.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 3, 2, 2, 2, 4, 3, 2, 2, 3, 3, 3, 2, 2, 2, 4, 3, 2, 1, 5, 4, 3, 2, 5, 5, 5, 5, 3, 3, 5, 5, 4, 4, 4, 5, 5, 2, 5, 3, 5, 4, 7, 2, 4, 6, 6, 5, 4, 4, 5, 8, 4, 4, 4, 7, 6, 4, 3, 4, 8, 4, 7, 3, 3, 6, 8, 2, 5, 6, 5, 4, 6, 4, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 23 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1. In other words, any integers n > 1 can be written as the sum of two triangular numbers and two powers of 5.
This has been verified for all n = 2..10^10.
See A303393 for the numbers of the form x*(x+1)/2 + 5^y with x and y nonnegative integers.
See also A303401, A303432 and A303540 for similar conjectures.

Examples

			a(4) = 1 with 4 = 1*(1+1)/2 + 1*(1+1)/2 + 5^0 + 5^0.
a(5) = 1 with 5 = 0*(0+1)/2 + 2*(2+1)/2 + 5^0 + 5^0.
a(7) = 1 with 7 = 0*(0+1)/2 + 1*(1+1)/2 + 5^0 + 5^1.
a(25) = 1 with 25 = 0*(0+1)/2 + 5*(5+1)/2 + 5^1 + 5^1.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n],i],1],4]==3&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
    tab={};Do[r=0;Do[If[QQ[4(n-5^j-5^k)+1],Do[If[SQ[8(n-5^j-5^k-x(x+1)/2)+1],r=r+1],{x,0,(Sqrt[4(n-5^j-5^k)+1]-1)/2}]],{j,0,Log[5,n/2]},{k,j,Log[5,n-5^j]}];tab=Append[tab,r],{n,1,80}];Print[tab]

A303393 Numbers of the form x*(x+1)/2 + 5^y with x and y nonnegative integers.

Original entry on oeis.org

1, 2, 4, 5, 6, 7, 8, 11, 15, 16, 20, 22, 25, 26, 28, 29, 31, 33, 35, 37, 40, 41, 46, 50, 53, 56, 60, 61, 67, 70, 71, 79, 80, 83, 91, 92, 96, 103, 106, 110, 116, 121, 125, 126, 128, 130, 131, 135, 137, 140, 141, 145, 146, 153, 154, 158, 161, 170, 172, 176
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 23 2018

Keywords

Comments

The author's conjecture in A303389 has the following equivalent version: Each integer n > 1 can be expressed as the sum of two terms of the current sequence.
This has been verified for all n = 2..2*10^8.

Examples

			a(1) = 1 with 1 = 0*(0+1)/2 + 5^0.
a(2) = 2 with 2 = 1*(1+1)/2 + 5^0.
a(3) = 4 with 4 = 2*(2+1)/2 + 5^0.
		

Crossrefs

Programs

  • Mathematica
    TQ[n_]:=TQ[n]=IntegerQ[Sqrt[8n+1]];
    tab={};Do[Do[If[TQ[m-5^k],tab=Append[tab,m];Goto[aa]],{k,0,Log[5,m]}];Label[aa],{m,1,176}];Print[tab]

A303399 Number of ordered pairs (a, b) with 0 <= a <= b such that n - 5^a - 5^b can be written as the sum of two triangular numbers.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 1, 4, 3, 3, 2, 5, 4, 4, 4, 3, 3, 4, 4, 3, 4, 4, 4, 3, 2, 4, 3, 3, 3, 5, 2, 4, 5, 4, 4, 4, 4, 3, 5, 3, 4, 4, 4, 4, 4, 3, 3, 5, 4, 5, 3, 3, 5, 5, 2, 4, 6, 3, 3, 4, 4, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 23 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1.
This is equivalent to the author's conjecture in A303389. It has been verified that a(n) > 0 for all n = 2..6*10^9.
Note that a nonnegative integer m is the sum of two triangular numbers if and only if 4*m + 1 can be written as the sum of two squares.

Examples

			a(6) = 2 with 6 - 5^0 - 5^0 = 1*(1+1)/2 + 2*(2+1)/2 and 6 - 5^0 - 5^1 = 0*(0+1)/2 + 0*(0+1)/2.
a(7) = 1 with 7 - 5^0 - 5^1 = 0*(0+1)/2 + 1*(1+1)/2.
a(25) = 1 with 25 - 5^1 - 5^1 = 0*(0+1)/2 + 5*(5+1)/2.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n],i],1],4]==3&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
    tab={};Do[r=0;Do[If[QQ[4(n-5^j-5^k)+1],r=r+1],{j,0,Log[5,n/2]},{k,j,Log[5,n-5^j]}];tab=Append[tab,r],{n,1,80}];Print[tab]

A303540 Number of ways to write n as a^2 + b^2 + binomial(2*c,c) + binomial(2*d,d), where a,b,c,d are nonnegative integers with a <= b and c <= d.

Original entry on oeis.org

0, 1, 2, 3, 2, 2, 3, 4, 3, 2, 3, 6, 4, 2, 2, 4, 4, 2, 2, 5, 5, 5, 4, 4, 4, 4, 5, 6, 5, 5, 4, 5, 4, 4, 3, 4, 5, 5, 6, 5, 5, 5, 4, 7, 3, 4, 5, 6, 4, 2, 4, 6, 7, 4, 4, 5, 7, 6, 2, 5, 4, 6, 3, 2, 5, 5, 5, 4, 4, 3, 7, 9, 6, 5, 6, 11, 7, 3, 4, 8
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 25 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1. In other words, any integer n > 1 can be written as the sum of two squares and two central binomial coefficients.
It has been verified that a(n) > 0 for all n = 2..10^10.
See also A303539 and A303541 for related information.
Jiao-Min Lin (a student at Nanjing University) has verified a(n) > 0 for all 1 < n <= 10^11. - Zhi-Wei Sun, Jul 30 2022

Examples

			a(2) = 1 since 2 = 0^2 + 0^2 + binomial(2*0,0) + binomial(2*0,0).
a(10) = 2 with 10 = 2^2 + 2^2 + binomial(2*0,0) + binomial(2*0,0) = 1^2 + 1^2 + binomial(2*1,1) + binomial(2*2,2).
a(2435) = 1 with 2435 = 32^2 + 33^2 + binomial(2*4,4) + binomial(2*5,5).
		

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    A:= Vector(N):
    for b from 0 to floor(sqrt(N)) do
      for a from 0 to min(b, floor(sqrt(N-b^2))) do
        t:= a^2+b^2;
        for d from 0 do
          s:= t + binomial(2*d,d);
          if s > N then break fi;
          for c from 0 to d do
            u:= s + binomial(2*c,c);
            if u > N then break fi;
            A[u]:= A[u]+1;
    od od od od:
    convert(A,list); # Robert Israel, May 30 2018
  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    c[n_]:=c[n]=Binomial[2n,n];
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n],i],1],4]==3&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
    tab={};Do[r=0;k=0;Label[bb];If[c[k]>n,Goto[aa]];Do[If[QQ[n-c[k]-c[j]],Do[If[SQ[n-c[k]-c[j]-x^2],r=r+1],{x,0,Sqrt[(n-c[k]-c[j])/2]}]],{j,0,k}];k=k+1;Goto[bb];Label[aa];tab=Append[tab,r],{n,1,80}];Print[tab]

A303434 Numbers of the form x*(3*x-1)/2 + 3^y with x and y nonnegative integers.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 10, 13, 14, 15, 21, 23, 25, 27, 28, 31, 32, 36, 38, 39, 44, 49, 52, 54, 60, 62, 71, 73, 78, 79, 81, 82, 86, 93, 95, 97, 101, 103, 116, 118, 119, 120, 126, 132, 144, 146, 148, 151, 154, 172, 173, 177, 179, 185
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 23 2018

Keywords

Comments

The author's conjecture in A303401 has the following equivalent version: Each integer n > 1 can be written as the sum of two terms of the current sequence.
This has been verified for all n = 2..7*10^6.

Examples

			a(1) = 1 with 1 = 0*(3*0-1)/2 + 3^0.
a(2) = 2 with 2 = 1*(3*1-1)/2 + 3^0.
a(5) = 6 with 6 = 2*(3*2-1)/2 + 3^0.
a(6) = 8 with 8 = 2*(3*2-1)/2 + 3^1.
		

Crossrefs

Programs

  • Mathematica
    PenQ[n_]:=PenQ[n]=IntegerQ[Sqrt[24n+1]]&&(n==0||Mod[Sqrt[24n+1]+1,6]==0);
    tab={};Do[Do[If[PenQ[m-3^k],n=n+1;tab=Append[tab,m];Goto[aa]],{k,0,Log[3,m]}];Label[aa],{m,1,185}];Print[tab]

A303656 Number of ways to write n as a^2 + b^2 + 3^c + 5^d, where a,b,c,d are nonnegative integers with a <= b.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 2, 3, 2, 4, 3, 4, 2, 4, 4, 3, 2, 4, 4, 3, 2, 4, 3, 4, 1, 4, 5, 6, 4, 6, 5, 5, 6, 6, 5, 8, 4, 6, 6, 5, 4, 7, 5, 7, 5, 6, 4, 5, 3, 4, 7, 6, 7, 8, 5, 4, 7, 5, 5, 9, 3, 6, 5, 6, 4, 6, 5, 7, 7, 4, 5, 5, 5, 4, 6, 5, 6, 10, 5, 4, 5, 7, 4, 9, 2, 9, 8, 5, 6, 6
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 27 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1. In other words, any integer n > 1 can be written as the sum of two squares, a power of 3 and a power of 5.
It has been verified that a(n) > 0 for all n = 2..2*10^10.
It seems that any integer n > 1 also can be written as the sum of two squares, a power of 2 and a power of 3.
The author would like to offer 3500 US dollars as the prize for the first proof of his conjecture that a(n) > 0 for all n > 1. - Zhi-Wei Sun, Jun 05 2018
Jiao-Min Lin (a student at Nanjing University) has verified a(n) > 0 for all 1 < n <= 2.4*10^11. - Zhi-Wei Sun, Jul 30 2022

Examples

			a(2) = 1 with 2 = 0^2 + 0^2 + 3^0 + 5^0.
a(5) = 1 with 5 = 0^2 + 1^2 + 3^1 + 5^0.
a(25) = 1 with 25 = 1^2 + 4^2 + 3^1 + 5^1.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n],i],1],4]==3&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
    tab={};Do[r=0;Do[If[QQ[n-3^k-5^m],Do[If[SQ[n-3^k-5^m-x^2],r=r+1],{x,0,Sqrt[(n-3^k-5^m)/2]}]],{k,0,Log[3,n]},{m,0,If[n==3^k,-1,Log[5,n-3^k]]}];tab=Append[tab,r],{n,1,90}];Print[tab]

A303539 Number of ordered pairs (k, m) with 0 <= k <= m such that n - binomial(2*k,k) - binomial(2*m,m) can be written as the sum of two squares.

Original entry on oeis.org

0, 1, 2, 3, 2, 2, 3, 4, 3, 2, 3, 6, 4, 2, 2, 4, 4, 2, 2, 5, 5, 5, 4, 4, 4, 4, 4, 5, 4, 5, 4, 4, 3, 4, 3, 4, 4, 5, 6, 5, 5, 5, 4, 7, 3, 3, 4, 6, 4, 2, 3, 5, 6, 3, 4, 5, 6, 5, 2, 5, 4, 5, 3, 2, 4, 5, 4, 3, 3, 3, 6, 7, 5, 5, 6, 10, 6, 3, 4, 8
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 25 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1.
a(n) > 0 for all n = 2..10^10.
See also A303540 and A303541 for related sequences.

Examples

			a(2) = 1 with 2 - binomial(2*0,0) - binomial(2*0,0) = 0^2 + 0^2.
a(3) = 2 with 3 - binomial(2*0,0) - binomial(2*0,0) = 0^2 + 1^2 and 3 - binomial(2*0,0) - binomial(2*1,1) = 0^2 + 0^2.
a(5) = 2 with 5 - binomial(2*0,0) - binomial(2*1,1) = 1^2 + 1^2 and 5 - binomial(2*1,1) - binomial(2*1,1) = 0^2 + 1^2.
		

Crossrefs

Programs

  • Mathematica
    c[n_]:=c[n]=Binomial[2n,n];
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n],i],1],4]==3&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
    tab={};Do[r=0;k=0;Label[bb];If[c[k]>n,Goto[aa]];Do[If[QQ[n-c[k]-c[j]],r=r+1],{j,0,k}];k=k+1;Goto[bb];Label[aa];tab=Append[tab,r],{n,1,80}];Print[tab]

A303541 Numbers of the form k^2 + binomial(2*m,m) with k and m nonnegative integers.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 15, 17, 18, 20, 21, 22, 24, 26, 27, 29, 31, 36, 37, 38, 42, 45, 50, 51, 55, 56, 65, 66, 69, 70, 71, 74, 79, 82, 83, 84, 86, 87, 95, 101, 102, 106, 119, 120, 122, 123, 127, 134
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 25 2018

Keywords

Comments

The conjecture in A303540 has the following equivalent version: Each integer n > 1 can be written as the sum of two terms of the current sequence.
This has been verified for all n = 2..10^10.

Examples

			a(1) = 1 with 0^2 + binomial(2*0,0) = 1.
a(7) = 10 with 2^2 + binomial(2*2,2) = 10.
a(8) = 11 with 3^2 + binomial(2*1,1) = 11.
		

Crossrefs

Programs

  • Mathematica
    c[n_]:=c[n]=Binomial[2n,n];
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};n=0;Do[k=0;Label[bb];If[c[k]>m,Goto[aa]];If[SQ[m-c[k]],n=n+1;tab=Append[tab,m];Goto[aa],k=k+1;Goto[bb]];Label[aa],{m,1,134}];Print[tab]
Showing 1-10 of 29 results. Next