cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A303363 Number of ways to write n as a*(a+1)/2 + b*(b+1)/2 + 2^c + 2^d, where a,b,c,d are nonnegative integers with a <= b, c <= d and 2|c.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 2, 4, 6, 3, 5, 6, 4, 6, 7, 4, 4, 9, 6, 6, 8, 4, 9, 9, 5, 7, 7, 5, 7, 9, 4, 8, 13, 7, 6, 11, 7, 10, 13, 8, 9, 10, 7, 9, 11, 7, 9, 15, 8, 8, 14, 6, 9, 16, 6, 8, 11, 11, 10, 12, 8, 7, 15, 10, 8, 11, 9, 14, 15, 9
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 22 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1.
This is stronger than the author's conjecture in A303233. I have verified a(n) > 0 for all n = 2..10^9.
In contrast, Corcker proved in 2008 that there are infinitely many positive integers not representable as the sum of two squares and at most two powers of 2.

Examples

			a(2) = 1 with 2 = 0*(0+1)/2 + 0*(0+1)/2 + 2^0 + 2^0.
a(3) = 2 with 3 = 0*(0+1)/2 + 1*(1+1)/2 + 2^0 + 2^0 = 0*(0+1)/2 + 0*(0+1)/2 + 2^0 + 2^1.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n],i],1],4]==3&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
    tab={};Do[r=0;Do[If[QQ[4(n-4^j-2^k)+1],Do[If[SQ[8(n-4^j-2^k-x(x+1)/2)+1],r=r+1],{x,0,(Sqrt[4(n-4^j-2^k)+1]-1)/2}]],{j,0,Log[4,n/2]},{k,2j,Log[2,n-4^j]}];tab=Append[tab,r],{n,1,70}];Print[tab]

A303389 Number of ways to write n as a*(a+1)/2 + b*(b+1)/2 + 5^c + 5^d, where a,b,c,d are nonnegative integers with a <= b and c <= d.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 3, 2, 2, 2, 4, 3, 2, 2, 3, 3, 3, 2, 2, 2, 4, 3, 2, 1, 5, 4, 3, 2, 5, 5, 5, 5, 3, 3, 5, 5, 4, 4, 4, 5, 5, 2, 5, 3, 5, 4, 7, 2, 4, 6, 6, 5, 4, 4, 5, 8, 4, 4, 4, 7, 6, 4, 3, 4, 8, 4, 7, 3, 3, 6, 8, 2, 5, 6, 5, 4, 6, 4, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 23 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1. In other words, any integers n > 1 can be written as the sum of two triangular numbers and two powers of 5.
This has been verified for all n = 2..10^10.
See A303393 for the numbers of the form x*(x+1)/2 + 5^y with x and y nonnegative integers.
See also A303401, A303432 and A303540 for similar conjectures.

Examples

			a(4) = 1 with 4 = 1*(1+1)/2 + 1*(1+1)/2 + 5^0 + 5^0.
a(5) = 1 with 5 = 0*(0+1)/2 + 2*(2+1)/2 + 5^0 + 5^0.
a(7) = 1 with 7 = 0*(0+1)/2 + 1*(1+1)/2 + 5^0 + 5^1.
a(25) = 1 with 25 = 0*(0+1)/2 + 5*(5+1)/2 + 5^1 + 5^1.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n],i],1],4]==3&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
    tab={};Do[r=0;Do[If[QQ[4(n-5^j-5^k)+1],Do[If[SQ[8(n-5^j-5^k-x(x+1)/2)+1],r=r+1],{x,0,(Sqrt[4(n-5^j-5^k)+1]-1)/2}]],{j,0,Log[5,n/2]},{k,j,Log[5,n-5^j]}];tab=Append[tab,r],{n,1,80}];Print[tab]

A303393 Numbers of the form x*(x+1)/2 + 5^y with x and y nonnegative integers.

Original entry on oeis.org

1, 2, 4, 5, 6, 7, 8, 11, 15, 16, 20, 22, 25, 26, 28, 29, 31, 33, 35, 37, 40, 41, 46, 50, 53, 56, 60, 61, 67, 70, 71, 79, 80, 83, 91, 92, 96, 103, 106, 110, 116, 121, 125, 126, 128, 130, 131, 135, 137, 140, 141, 145, 146, 153, 154, 158, 161, 170, 172, 176
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 23 2018

Keywords

Comments

The author's conjecture in A303389 has the following equivalent version: Each integer n > 1 can be expressed as the sum of two terms of the current sequence.
This has been verified for all n = 2..2*10^8.

Examples

			a(1) = 1 with 1 = 0*(0+1)/2 + 5^0.
a(2) = 2 with 2 = 1*(1+1)/2 + 5^0.
a(3) = 4 with 4 = 2*(2+1)/2 + 5^0.
		

Crossrefs

Programs

  • Mathematica
    TQ[n_]:=TQ[n]=IntegerQ[Sqrt[8n+1]];
    tab={};Do[Do[If[TQ[m-5^k],tab=Append[tab,m];Goto[aa]],{k,0,Log[5,m]}];Label[aa],{m,1,176}];Print[tab]

A303399 Number of ordered pairs (a, b) with 0 <= a <= b such that n - 5^a - 5^b can be written as the sum of two triangular numbers.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 1, 4, 3, 3, 2, 5, 4, 4, 4, 3, 3, 4, 4, 3, 4, 4, 4, 3, 2, 4, 3, 3, 3, 5, 2, 4, 5, 4, 4, 4, 4, 3, 5, 3, 4, 4, 4, 4, 4, 3, 3, 5, 4, 5, 3, 3, 5, 5, 2, 4, 6, 3, 3, 4, 4, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 23 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1.
This is equivalent to the author's conjecture in A303389. It has been verified that a(n) > 0 for all n = 2..6*10^9.
Note that a nonnegative integer m is the sum of two triangular numbers if and only if 4*m + 1 can be written as the sum of two squares.

Examples

			a(6) = 2 with 6 - 5^0 - 5^0 = 1*(1+1)/2 + 2*(2+1)/2 and 6 - 5^0 - 5^1 = 0*(0+1)/2 + 0*(0+1)/2.
a(7) = 1 with 7 - 5^0 - 5^1 = 0*(0+1)/2 + 1*(1+1)/2.
a(25) = 1 with 25 - 5^1 - 5^1 = 0*(0+1)/2 + 5*(5+1)/2.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n],i],1],4]==3&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
    tab={};Do[r=0;Do[If[QQ[4(n-5^j-5^k)+1],r=r+1],{j,0,Log[5,n/2]},{k,j,Log[5,n-5^j]}];tab=Append[tab,r],{n,1,80}];Print[tab]
Showing 1-4 of 4 results.