cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303238 Number of nX4 0..1 arrays with every element equal to 0, 2, 3, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

This page as a plain text file.
%I A303238 #4 Apr 20 2018 10:52:43
%S A303238 1,13,8,10,61,160,458,1748,6056,20975,76565,277934,1007900,3682461,
%T A303238 13473650,49327443,180826119,663368564,2434697476,8939173919,
%U A303238 32829758366,120594251282,443046818432,1627867352002,5981695596761,21981441331135
%N A303238 Number of nX4 0..1 arrays with every element equal to 0, 2, 3, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
%C A303238 Column 4 of A303242.
%H A303238 R. H. Hardin, <a href="/A303238/b303238.txt">Table of n, a(n) for n = 1..210</a>
%F A303238 Empirical: a(n) = 6*a(n-1) -9*a(n-2) +21*a(n-3) -90*a(n-4) +46*a(n-5) -59*a(n-6) +498*a(n-7) +303*a(n-8) +2*a(n-9) -1395*a(n-10) -2312*a(n-11) -1830*a(n-12) +300*a(n-13) +2761*a(n-14) +3874*a(n-15) +8613*a(n-16) +16030*a(n-17) +21048*a(n-18) +7631*a(n-19) -27333*a(n-20) -67369*a(n-21) -75208*a(n-22) -16509*a(n-23) +47108*a(n-24) +59837*a(n-25) -35435*a(n-26) -119978*a(n-27) -82030*a(n-28) +115336*a(n-29) +248334*a(n-30) +137434*a(n-31) -175587*a(n-32) -360401*a(n-33) -165267*a(n-34) +287056*a(n-35) +566786*a(n-36) +354913*a(n-37) -61815*a(n-38) -419239*a(n-39) -359737*a(n-40) -69994*a(n-41) +152964*a(n-42) +111152*a(n-43) -23478*a(n-44) -121548*a(n-45) -86411*a(n-46) -6136*a(n-47) +64103*a(n-48) +63614*a(n-49) +31252*a(n-50) -324*a(n-51) -23046*a(n-52) -6881*a(n-53) +7713*a(n-54) +385*a(n-55) +2034*a(n-56) +2535*a(n-57) -1116*a(n-58) -2600*a(n-59) -1588*a(n-60) -112*a(n-61) +798*a(n-62) +676*a(n-63) -124*a(n-64) -253*a(n-65) -10*a(n-66) +66*a(n-67) +9*a(n-68) -13*a(n-69) -a(n-70) +a(n-71) for n>72
%e A303238 Some solutions for n=5
%e A303238 ..0..1..0..1. .0..1..1..0. .0..0..1..0. .0..1..1..0. .0..0..0..1
%e A303238 ..0..1..0..1. .0..1..1..1. .0..0..1..0. .1..1..1..0. .1..0..0..0
%e A303238 ..0..1..0..1. .0..1..1..1. .0..0..1..0. .1..1..1..0. .0..0..0..0
%e A303238 ..0..1..0..1. .0..1..1..0. .0..0..1..0. .0..0..1..1. .0..0..0..0
%e A303238 ..0..1..0..1. .0..1..1..1. .0..0..1..0. .0..0..1..1. .1..0..0..1
%Y A303238 Cf. A303242.
%K A303238 nonn
%O A303238 1,2
%A A303238 _R. H. Hardin_, Apr 20 2018