This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303238 #4 Apr 20 2018 10:52:43 %S A303238 1,13,8,10,61,160,458,1748,6056,20975,76565,277934,1007900,3682461, %T A303238 13473650,49327443,180826119,663368564,2434697476,8939173919, %U A303238 32829758366,120594251282,443046818432,1627867352002,5981695596761,21981441331135 %N A303238 Number of nX4 0..1 arrays with every element equal to 0, 2, 3, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero. %C A303238 Column 4 of A303242. %H A303238 R. H. Hardin, <a href="/A303238/b303238.txt">Table of n, a(n) for n = 1..210</a> %F A303238 Empirical: a(n) = 6*a(n-1) -9*a(n-2) +21*a(n-3) -90*a(n-4) +46*a(n-5) -59*a(n-6) +498*a(n-7) +303*a(n-8) +2*a(n-9) -1395*a(n-10) -2312*a(n-11) -1830*a(n-12) +300*a(n-13) +2761*a(n-14) +3874*a(n-15) +8613*a(n-16) +16030*a(n-17) +21048*a(n-18) +7631*a(n-19) -27333*a(n-20) -67369*a(n-21) -75208*a(n-22) -16509*a(n-23) +47108*a(n-24) +59837*a(n-25) -35435*a(n-26) -119978*a(n-27) -82030*a(n-28) +115336*a(n-29) +248334*a(n-30) +137434*a(n-31) -175587*a(n-32) -360401*a(n-33) -165267*a(n-34) +287056*a(n-35) +566786*a(n-36) +354913*a(n-37) -61815*a(n-38) -419239*a(n-39) -359737*a(n-40) -69994*a(n-41) +152964*a(n-42) +111152*a(n-43) -23478*a(n-44) -121548*a(n-45) -86411*a(n-46) -6136*a(n-47) +64103*a(n-48) +63614*a(n-49) +31252*a(n-50) -324*a(n-51) -23046*a(n-52) -6881*a(n-53) +7713*a(n-54) +385*a(n-55) +2034*a(n-56) +2535*a(n-57) -1116*a(n-58) -2600*a(n-59) -1588*a(n-60) -112*a(n-61) +798*a(n-62) +676*a(n-63) -124*a(n-64) -253*a(n-65) -10*a(n-66) +66*a(n-67) +9*a(n-68) -13*a(n-69) -a(n-70) +a(n-71) for n>72 %e A303238 Some solutions for n=5 %e A303238 ..0..1..0..1. .0..1..1..0. .0..0..1..0. .0..1..1..0. .0..0..0..1 %e A303238 ..0..1..0..1. .0..1..1..1. .0..0..1..0. .1..1..1..0. .1..0..0..0 %e A303238 ..0..1..0..1. .0..1..1..1. .0..0..1..0. .1..1..1..0. .0..0..0..0 %e A303238 ..0..1..0..1. .0..1..1..0. .0..0..1..0. .0..0..1..1. .0..0..0..0 %e A303238 ..0..1..0..1. .0..1..1..1. .0..0..1..0. .0..0..1..1. .1..0..0..1 %Y A303238 Cf. A303242. %K A303238 nonn %O A303238 1,2 %A A303238 _R. H. Hardin_, Apr 20 2018