A303254 T(n,k) = Number of n X k 0..1 arrays with every element equal to 1, 2, 3, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
0, 1, 0, 1, 3, 0, 2, 14, 11, 0, 3, 45, 49, 34, 0, 5, 146, 203, 250, 111, 0, 8, 537, 955, 1401, 1183, 361, 0, 13, 1934, 4556, 10264, 8664, 5918, 1172, 0, 21, 6861, 21843, 78679, 106803, 55624, 28680, 3809, 0, 34, 24386, 103319, 584333, 1218385, 1105676, 349273
Offset: 1
Examples
Some solutions for n=5, k=4 ..0..0..1..1. .0..1..0..0. .0..1..0..0. .0..0..1..1. .0..0..1..0 ..1..1..0..1. .1..0..0..0. .0..0..1..1. .0..1..0..0. .0..1..0..1 ..1..0..0..0. .1..0..1..0. .0..1..0..0. .1..0..0..1. .0..0..1..1 ..0..1..1..0. .0..1..1..1. .1..1..0..1. .1..1..1..1. .1..0..1..0 ..0..0..0..1. .0..0..0..1. .1..0..1..1. .0..0..0..0. .0..1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..180
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4)
k=3: [order 14]
k=4: [order 43] for n>44
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = 2*a(n-1) +3*a(n-2) +6*a(n-3) +10*a(n-4) +4*a(n-5) for n>6
n=3: [order 19] for n>21
n=4: [order 63] for n>66
Comments