A303260 Determinant of n X n matrix A[i,j] = (j - i - 1 mod n) + [i=j], i.e., the circulant having (n, 0, 1, ..., n-2) as first row.
1, 1, 4, 28, 273, 3421, 52288, 941578, 19505545, 456790123, 11931215316, 343871642632, 10840081272265, 371026432467913, 13702802011918048, 543154131059225686, 23000016472483168305, 1036227971225610466711, 49492629462587441963140, 2497992686980609418282548, 132849300060919364474261281
Offset: 0
Keywords
Examples
a(5) = 3421 is the determinant of the matrix ( 5 0 1 2 3 ) ( 3 5 0 1 2 ) ( 2 3 5 0 1 ) and 3421 = 23501[6], i.e., written in base 6. ( 1 2 3 5 0 ) ( 0 1 2 3 5 ).
Links
- Max Alekseyev, Illustration for a(9) = 456790123 = A219324(20).
- N. I. Belukhov, Solution to Problem 14.7 (in Russian), Matematicheskoe Prosveshchenie 15 (2011), pp. 241-244.
- Wikipedia, Circulant matrix.
Crossrefs
Programs
-
PARI
a(n)=matdet(matrix(n,n,i,j,(j-i-1)%n+(i==j)))
-
Python
from sympy import Matrix def A303260(n): return Matrix(n,n, lambda i,j:(j-i-1) % n + (i==j)).det() # Chai Wah Wu, Oct 18 2021
Formula
a(n) = det(I(n) + C(n)), where I(n) is the n X n identity matrix and C(n) is the circulant having (n-1, ..., 0) as first column.
Comments