cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303273 Array T(n,k) = binomial(n, 2) + k*n + 1 read by antidiagonals.

This page as a plain text file.
%I A303273 #37 May 18 2018 12:13:28
%S A303273 1,1,1,1,2,2,1,3,4,4,1,4,6,7,7,1,5,8,10,11,11,1,6,10,13,15,16,16,1,7,
%T A303273 12,16,19,21,22,22,1,8,14,19,23,26,28,29,29,1,9,16,22,27,31,34,36,37,
%U A303273 37,1,10,18,25,31,36,40,43,45,46,46,1,11,20,28,35,41
%N A303273 Array T(n,k) = binomial(n, 2) + k*n + 1 read by antidiagonals.
%C A303273 Columns are linear recurrence sequences with signature (3,-3,1).
%C A303273 8*T(n,k) + A166147(k-1) are squares.
%C A303273 Columns k are binomial transforms of [1, k, 1, 0, 0, 0, ...].
%C A303273 Antidiagonals sums yield A116731.
%D A303273 R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.
%F A303273 G.f.: (3*x^2*y - 3*x*y + y - 2*x^2 + 2*x - 1)/((x - 1)^3*(y - 1)^2).
%F A303273 E.g.f.: (1/2)*(2*x*y + x^2 + 2)*exp(y + x).
%F A303273 T(n,k) = 3*T(n-1,k) - 3*T(n-2,k) + T(n-3,k), with T(0,k) = 1, T(1,k) = k + 1 and T(2,k) = 2*k + 2.
%F A303273 T(n,k) = T(n-1,k) + n + k - 1.
%F A303273 T(n,k) = T(n,k-1) + n, with T(n,0) = 1.
%F A303273 T(n,0) = A152947(n+1).
%F A303273 T(n,1) = A000124(n).
%F A303273 T(n,2) = A000217(n).
%F A303273 T(n,3) = A034856(n+1).
%F A303273 T(n,4) = A052905(n).
%F A303273 T(n,5) = A051936(n+4).
%F A303273 T(n,6) = A246172(n+1).
%F A303273 T(n,7) = A302537(n).
%F A303273 T(n,8) = A056121(n+1) + 1.
%F A303273 T(n,9) = A056126(n+1) + 1.
%F A303273 T(n,10) = A051942(n+10) + 1, n > 0.
%F A303273 T(n,11) = A101859(n) + 1.
%F A303273 T(n,12) = A132754(n+1) + 1.
%F A303273 T(n,13) = A132755(n+1) + 1.
%F A303273 T(n,14) = A132756(n+1) + 1.
%F A303273 T(n,15) = A132757(n+1) + 1.
%F A303273 T(n,16) = A132758(n+1) + 1.
%F A303273 T(n,17) = A212427(n+1) + 1.
%F A303273 T(n,18) = A212428(n+1) + 1.
%F A303273 T(n,n) = A143689(n) = A300192(n,2).
%F A303273 T(n,n+1) = A104249(n).
%F A303273 T(n,n+2) = T(n+1,n) = A005448(n+1).
%F A303273 T(n,n+3) = A000326(n+1).
%F A303273 T(n,n+4) = A095794(n+1).
%F A303273 T(n,n+5) = A133694(n+1).
%F A303273 T(n+2,n) = A005449(n+1).
%F A303273 T(n+3,n) = A115067(n+2).
%F A303273 T(n+4,n) = A133694(n+2).
%F A303273 T(2*n,n) = A054556(n+1).
%F A303273 T(2*n,n+1) = A054567(n+1).
%F A303273 T(2*n,n+2) = A033951(n).
%F A303273 T(2*n,n+3) = A001107(n+1).
%F A303273 T(2*n,n+4) = A186353(4*n+1) (conjectured).
%F A303273 T(2*n,n+5) = A184103(8*n+1) (conjectured).
%F A303273 T(2*n,n+6) = A250657(n-1) = A250656(3,n-1), n > 1.
%F A303273 T(n,2*n) = A140066(n+1).
%F A303273 T(n+1,2*n) = A005891(n).
%F A303273 T(n+2,2*n) = A249013(5*n+4) (conjectured).
%F A303273 T(n+3,2*n) = A186384(5*n+3) = A186386(5*n+3) (conjectured).
%F A303273 T(2*n,2*n) = A143689(2*n).
%F A303273 T(2*n+1,2*n+1) = A143689(2*n+1) (= A030503(3*n+3) (conjectured)).
%F A303273 T(2*n,2*n+1) = A104249(2*n) = A093918(2*n+2) = A131355(4*n+1) (= A030503(3*n+5) (conjectured)).
%F A303273 T(2*n+1,2*n) = A085473(n).
%F A303273 a(n+1,5*n+1)=A051865(n+1) + 1.
%F A303273 a(n,2*n+1) = A116668(n).
%F A303273 a(2*n+1,n) = A054569(n+1).
%F A303273 T(3*n,n) = A025742(3*n-1), n > 1 (conjectured).
%F A303273 T(n,3*n) = A140063(n+1).
%F A303273 T(n+1,3*n) = A069099(n+1).
%F A303273 T(n,4*n) = A276819(n).
%F A303273 T(4*n,n) = A154106(n-1), n > 0.
%F A303273 T(2^n,2) = A028401(n+2).
%F A303273 T(1,n)*T(n,1) = A006000(n).
%F A303273 T(n*(n+1),n) = A211905(n+1), n > 0 (conjectured).
%F A303273 T(n*(n+1)+1,n) = A294259(n+1).
%F A303273 T(n,n^2+1) = A081423(n).
%F A303273 T(n,A000217(n)) = A158842(n), n > 0.
%F A303273 T(n,A152947(n+1)) = A060354(n+1).
%F A303273 floor(T(n,n/2)) = A267682(n) (conjectured).
%F A303273 floor(T(n,n/3)) = A025742(n-1), n > 0 (conjectured).
%F A303273 floor(T(n,n/4)) = A263807(n-1), n > 0 (conjectured).
%F A303273 ceiling(T(n,2^n)/n) = A134522(n), n > 0 (conjectured).
%F A303273 ceiling(T(n,n/2+n)/n) = A051755(n+1) (conjectured).
%F A303273 floor(T(n,n)/n) = A133223(n), n > 0 (conjectured).
%F A303273 ceiling(T(n,n)/n) = A007494(n), n > 0.
%F A303273 ceiling(T(n,n^2)/n) = A171769(n), n > 0.
%F A303273 ceiling(T(2*n,n^2)/n) = A046092(n), n > 0.
%F A303273 ceiling(T(2*n,2^n)/n) = A131520(n+2), n > 0.
%e A303273 The array T(n,k) begins
%e A303273 1    1    1    1    1    1    1    1    1    1    1    1    1  ...  A000012
%e A303273 1    2    3    4    5    6    7    8    9   10   11   12   13  ...  A000027
%e A303273 2    4    6    8   10   12   14   16   18   20   22   24   26  ...  A005843
%e A303273 4    7   10   13   16   19   22   25   28   31   34   37   40  ...  A016777
%e A303273 7   11   15   19   23   27   31   35   39   43   47   51   55  ...  A004767
%e A303273 11  16   21   26   31   36   41   46   51   56   61   66   71  ...  A016861
%e A303273 16  22   28   34   40   46   52   58   64   70   76   82   88  ...  A016957
%e A303273 22  29   36   43   50   57   64   71   78   85   92   99  106  ...  A016993
%e A303273 29  37   45   53   61   69   77   85   93  101  109  117  125  ...  A004770
%e A303273 37  46   55   64   73   82   91  100  109  118  127  136  145  ...  A017173
%e A303273 46  56   66   76   86   96  106  116  126  136  146  156  166  ...  A017341
%e A303273 56  67   78   89  100  111  122  133  144  155  166  177  188  ...  A017401
%e A303273 67  79   91  103  115  127  139  151  163  175  187  199  211  ...  A017605
%e A303273 79  92  105  118  131  144  157  170  183  196  209  222  235  ...  A190991
%e A303273 ...
%e A303273 The inverse binomial transforms of the columns are
%e A303273 1    1    1    1    1    1    1    1    1    1    1    1    1  ...
%e A303273 0    1    2    3    4    5    6    7    8    9   10   11   12  ...
%e A303273 1    1    1    1    1    1    1    1    1    1    1    1    1  ...
%e A303273 0    0    0    0    0    0    0    0    0    0    0    0    0  ...
%e A303273 0    0    0    0    0    0    0    0    0    0    0    0    0  ...
%e A303273 0    0    0    0    0    0    0    0    0    0    0    0    0  ...
%e A303273 ...
%e A303273 T(k,n-k) = A087401(n,k) + 1 as triangle
%e A303273 1
%e A303273 1   1
%e A303273 1   2   2
%e A303273 1   3   4   4
%e A303273 1   4   6   7   7
%e A303273 1   5   8  10  11  11
%e A303273 1   6  10  13  15  16  16
%e A303273 1   7  12  16  19  21  22  22
%e A303273 1   8  14  19  23  26  28  29  29
%e A303273 1   9  16  22  27  31  34  36  37  37
%e A303273 1  10  18  25  31  36  40  43  45  46  46
%e A303273 ...
%p A303273 T := (n, k) -> binomial(n, 2) + k*n + 1;
%p A303273 for n from 0 to 20 do seq(T(n, k), k = 0 .. 20) od;
%t A303273 Table[With[{n = m - k}, Binomial[n, 2] + k n + 1], {m, 0, 11}, {k, m, 0, -1}] // Flatten (* _Michael De Vlieger_, Apr 21 2018 *)
%o A303273 (Maxima)
%o A303273 T(n, k) := binomial(n, 2)+ k*n + 1$
%o A303273 for n:0 thru 20 do
%o A303273     print(makelist(T(n, k), k, 0, 20));
%o A303273 (PARI) T(n,k) = binomial(n, 2) + k*n + 1;
%o A303273 tabl(nn) = for (n=0, nn, for (k=0, nn, print1(T(n, k), ", ")); print); \\ _Michel Marcus_, May 17 2018
%Y A303273 Cf. A085475, A086270, A086271, A086272, A086273, A130154, A159798, A162609, A162610, A300401.
%K A303273 nonn,tabl
%O A303273 0,5
%A A303273 _Franck Maminirina Ramaharo_, Apr 20 2018