This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303277 #10 Jun 14 2018 04:04:22 %S A303277 1,1,1,4,1,32,1,9,8,128,1,243,1,512,256,16,1,243,1,2187,1024,8192,1, %T A303277 1024,32,32768,27,19683,1,59049,1,25,16384,524288,4096,1024,1,2097152, %U A303277 65536,16384,1,531441,1,1594323,6561,33554432,1,3125,128,2187,1048576,14348907,1,1024,65536 %N A303277 If n = Product (p_j^k_j) then a(n) = (Sum (k_j))^(Sum (p_j)). %H A303277 Antti Karttunen, <a href="/A303277/b303277.txt">Table of n, a(n) for n = 1..4096</a> %F A303277 a(n) = bigomega(n)^sopf(n) = A001222(n)^A008472(n). %F A303277 a(p^k) = k^p where p is a prime. %F A303277 a(A000312(k)) = a(k)*k^A008472(k). %F A303277 a(A000142(k)) = A022559(k)^A034387(k). %F A303277 a(A002110(k)) = k^A007504(k). %e A303277 a(48) = a(2^4 * 3^1) = (4 + 1)^(2 + 3) = 5^5 = 3125. %t A303277 Join[{1}, Table[PrimeOmega[n]^DivisorSum[n, # &, PrimeQ[#] &], {n, 2, 55}]] %o A303277 (PARI) a(n) = my(f=factor(n)); vecsum(f[,2])^vecsum(f[,1]); \\ _Michel Marcus_, Apr 21 2018 %Y A303277 Cf. A000142, A000312, A001222, A002110, A007504, A008472, A008474, A008477, A022559, A034387, A039697, A088865, A263653, A285769. %K A303277 nonn %O A303277 1,4 %A A303277 _Ilya Gutkovskiy_, Apr 20 2018