This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303293 #18 May 29 2025 10:40:33 %S A303293 0,1,1,2,4,2,1,1,1,1,1,16,2,16,1,4,9,1,1,9,4,3,1,3,16,3,1,3,1,64,4, %T A303293 256,256,4,64,1,2,16,4,4,160,4,4,16,2,9,1,9,121,25,25,121,9,1,9,4,169, %U A303293 12,2916,268,144,268,2916,12,169,4 %N A303293 Array read by antidiagonals: T(m,n) = number of minimum total dominating sets in the grid graph P_m X P_n. %C A303293 The minimum size of a total dominating set is the total domination number A300358(m, n). %H A303293 Andrew Howroyd, <a href="/A303293/b303293.txt">Table of n, a(n) for n = 1..435</a> (first 29 antidiagonals) %H A303293 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GridGraph.html">Grid Graph</a>. %H A303293 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MinimumTotalDominatingSet.html">Minimum Total Dominating Set</a>. %e A303293 Table begins: %e A303293 =============================================== %e A303293 m\n| 1 2 3 4 5 6 7 8 9 %e A303293 ---+------------------------------------------- %e A303293 1 | 0 1 2 1 1 4 3 1 2 ... %e A303293 2 | 1 4 1 16 9 1 64 16 1 ... %e A303293 3 | 2 1 2 1 3 4 4 9 12 ... %e A303293 4 | 1 16 1 16 256 4 121 2916 25 ... %e A303293 5 | 1 9 3 256 160 25 268 4225 510 ... %e A303293 6 | 4 1 4 4 25 144 529 2025 10404 ... %e A303293 7 | 3 64 4 121 268 529 4 441 630 ... %e A303293 8 | 1 16 9 2916 4225 2025 441 256 9 ... %e A303293 9 | 2 1 12 25 510 10404 630 9 1364 ... %e A303293 ... %Y A303293 Rows 1..2 are A302654, A303054. %Y A303293 Main diagonal is A303142. %Y A303293 Cf. A300358, A303111, A303118. %K A303293 nonn,tabl %O A303293 1,4 %A A303293 _Andrew Howroyd_, Apr 20 2018