A303295 a(n) is the maximum water retention of a height-3 length-n number parallelogram with maximum water area.
0, 20, 49, 99, 165, 247, 345, 459, 589, 735, 897, 1075, 1269, 1479, 1705, 1947, 2205, 2479, 2769, 3075, 3397, 3735, 4089, 4459, 4845, 5247, 5665, 6099, 6549, 7015, 7497, 7995, 8509, 9039, 9585, 10147, 10725, 11319, 11929, 12555
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Craig Knecht, Example for the sequence.
- Craig Knecht, Five magic polyiamond tilings of a single numeric solution.
- Craig Knecht, Length 2 paralleogram unique dam configuration.
- Craig Knecht, Magic polyiamond tiling H3 L4 Parallelogram with 99 units retained.
- Craig Knecht, Water retention using a pentagonal tile.
- Wikipedia, Water retention on mathematical surfaces
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A261347.
Programs
-
PARI
concat(0, Vec(x*(20 - 11*x + 12*x^2 - 5*x^3) / (1 - x)^3 + O(x^50))) \\ Colin Barker, Jun 15 2018
Formula
a(n) = ((4*n+7)*(4*n+2)) - (4*n+2) * (4*n+3)/2 + 4 for n > 2.
From Colin Barker, Jun 15 2018: (Start)
G.f.: x*(20 - 11*x + 12*x^2 - 5*x^3) / (1 - x)^3.
a(n) = -3 + 10*n + 8*n^2 for n>1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 4.
(End)
Comments