cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303321 Number of nX4 0..1 arrays with every element equal to 0, 2, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

This page as a plain text file.
%I A303321 #4 Apr 21 2018 13:10:27
%S A303321 1,8,1,2,4,3,3,10,9,10,19,29,40,65,96,148,238,356,573,865,1381,2136,
%T A303321 3369,5245,8248,12925,20251,31889,49995,78599,123579,194464,305630,
%U A303321 481471,757704,1193056,1879551,2961524,4666170,7355683,11597513,18284922
%N A303321 Number of nX4 0..1 arrays with every element equal to 0, 2, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
%C A303321 Column 4 of A303325.
%H A303321 R. H. Hardin, <a href="/A303321/b303321.txt">Table of n, a(n) for n = 1..210</a>
%F A303321 Empirical: a(n) = 2*a(n-2) +4*a(n-3) +2*a(n-4) -3*a(n-5) -6*a(n-6) -10*a(n-7) -16*a(n-8) -9*a(n-9) +11*a(n-10) +35*a(n-11) +39*a(n-12) +30*a(n-13) +13*a(n-14) -6*a(n-15) -38*a(n-16) -66*a(n-17) -80*a(n-18) -55*a(n-19) -14*a(n-20) +25*a(n-21) +49*a(n-22) +76*a(n-23) +90*a(n-24) +67*a(n-25) +16*a(n-26) -30*a(n-27) -46*a(n-28) -37*a(n-29) -49*a(n-30) -51*a(n-31) -12*a(n-32) +47*a(n-33) +62*a(n-34) +14*a(n-35) -16*a(n-36) -7*a(n-37) -8*a(n-38) -35*a(n-39) -48*a(n-40) -18*a(n-41) +19*a(n-42) +33*a(n-43) +23*a(n-44) +16*a(n-45) +12*a(n-46) +a(n-47) -6*a(n-48) -11*a(n-49) -8*a(n-50) -3*a(n-51) -a(n-52) +2*a(n-53) +a(n-54) +a(n-55) for n>57
%e A303321 All solutions for n=5
%e A303321 ..0..0..0..1. .0..1..1..1. .0..1..0..1. .0..0..1..1
%e A303321 ..0..0..0..1. .0..1..1..1. .0..1..0..1. .0..0..1..1
%e A303321 ..0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1
%e A303321 ..0..0..0..1. .0..1..1..1. .0..1..0..1. .0..0..1..1
%e A303321 ..0..0..0..1. .0..1..1..1. .0..1..0..1. .0..0..1..1
%Y A303321 Cf. A303325.
%K A303321 nonn
%O A303321 1,2
%A A303321 _R. H. Hardin_, Apr 21 2018