A303322 Number of nX5 0..1 arrays with every element equal to 0, 2, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
1, 32, 4, 12, 64, 62, 204, 744, 900, 2996, 9564, 14880, 45124, 129796, 240124, 683372, 1837592, 3790988, 10329636, 26707488, 59005404, 155944784, 394374956, 909596688, 2353555396, 5880643036, 13932609908, 35527598224, 88215135628
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..1..0..0..0. .0..0..0..0..0. .0..0..1..0..0. .0..1..1..1..0 ..1..1..1..0..1. .1..0..1..0..1. .1..0..0..0..1. .0..1..1..1..0 ..1..0..1..0..1. .1..0..1..0..1. .1..0..1..0..1. .0..1..0..1..0 ..1..1..1..0..1. .1..0..1..0..1. .1..0..0..0..1. .0..1..1..1..0 ..1..1..1..0..1. .0..0..0..0..0. .1..0..0..0..1. .0..1..1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A303325.
Formula
Empirical: a(n) = 2*a(n-1) +2*a(n-2) +20*a(n-3) -44*a(n-4) -36*a(n-5) -124*a(n-6) +282*a(n-7) +212*a(n-8) +259*a(n-9) -333*a(n-10) -510*a(n-11) -408*a(n-12) -836*a(n-13) +476*a(n-14) +727*a(n-15) -2239*a(n-16) +1520*a(n-17) +5253*a(n-18) -1133*a(n-19) -2582*a(n-20) +3952*a(n-21) +2247*a(n-22) -5936*a(n-23) -2324*a(n-24) +2534*a(n-25) -1666*a(n-26) -1578*a(n-27) +920*a(n-28) +256*a(n-29) -96*a(n-30) +64*a(n-31) +32*a(n-32) +32*a(n-33) for n>35
Comments