A303326 Number of 4 X n 0..1 arrays with every element equal to 0, 2, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
8, 2, 8, 2, 12, 10, 46, 50, 204, 290, 1034, 1682, 5458, 9802, 29582, 57122, 163166, 332930, 911976, 1940450, 5149146, 11309770, 29300080, 65918162, 167721900, 384199202, 964447184, 2239277042, 5564863708, 13051463050, 32192084054
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..1..1..1..0. .0..0..0..0..0. .0..1..0..1..0. .0..1..0..1..0 ..1..1..0..1..1. .0..0..0..0..0. .1..1..1..1..1. .1..1..1..1..1 ..0..0..0..0..0. .1..1..1..1..1. .0..0..0..0..0. .0..0..0..0..0 ..0..0..0..0..0. .0..1..0..1..0. .0..0..0..0..0. .1..0..1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A303325.
Formula
Empirical: a(n) = 2*a(n-1) +9*a(n-2) -16*a(n-3) -25*a(n-4) +34*a(n-5) +15*a(n-6) +4*a(n-7) +34*a(n-8) -64*a(n-9) -42*a(n-10) +20*a(n-11) -7*a(n-12) +34*a(n-13) +21*a(n-14) -8*a(n-15) -a(n-16) -6*a(n-17) -3*a(n-18) for n > 19.
Comments