cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303327 Number of 5Xn 0..1 arrays with every element equal to 0, 2, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

This page as a plain text file.
%I A303327 #4 Apr 21 2018 13:15:07
%S A303327 16,1,16,4,64,25,368,201,2545,1855,21082,17922,193932,178310,1883444,
%T A303327 1798105,18748029,18258149,188640260,186011969,1906833092,1898120576,
%U A303327 19312818727,19383847701,195770541009,198022534325,1985235845500
%N A303327 Number of 5Xn 0..1 arrays with every element equal to 0, 2, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
%C A303327 Row 5 of A303325.
%H A303327 R. H. Hardin, <a href="/A303327/b303327.txt">Table of n, a(n) for n = 1..210</a>
%F A303327 Empirical: a(n) = 6*a(n-1) +12*a(n-2) -129*a(n-3) +69*a(n-4) +842*a(n-5) -1297*a(n-6) -839*a(n-7) +3412*a(n-8) -9036*a(n-9) +11871*a(n-10) +17108*a(n-11) -45954*a(n-12) +47570*a(n-13) -53012*a(n-14) -66076*a(n-15) +203444*a(n-16) -165552*a(n-17) +190584*a(n-18) +4296*a(n-19) -282112*a(n-20) +206832*a(n-21) -309856*a(n-22) +208160*a(n-23) -21344*a(n-24) +101312*a(n-25) -1024*a(n-26) +22336*a(n-27) -32256*a(n-28) +2560*a(n-29) -2816*a(n-30) +2816*a(n-31) +1536*a(n-32) +1024*a(n-33) -1024*a(n-34) for n>35
%e A303327 Some solutions for n=5
%e A303327 ..0..0..1..0..0. .0..1..0..1..0. .0..0..0..1..0. .0..0..1..1..0
%e A303327 ..0..0..1..0..0. .0..1..0..1..0. .1..0..1..1..1. .1..0..0..1..1
%e A303327 ..0..1..0..1..0. .1..1..1..1..1. .0..0..0..0..0. .0..0..0..0..0
%e A303327 ..0..0..1..0..0. .0..0..0..0..0. .1..1..1..0..1. .1..1..0..0..1
%e A303327 ..1..0..0..0..1. .0..0..0..0..0. .0..1..0..0..0. .1..1..0..0..1
%Y A303327 Cf. A303325.
%K A303327 nonn
%O A303327 1,1
%A A303327 _R. H. Hardin_, Apr 21 2018