cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303358 Bi-unitary deficient-perfect numbers: bi-unitary deficient numbers k for such that 2*k - bsigma(k) is a bi-unitary divisor of k, where bsigma(k) is the sum of bi-unitary divisors of k (A188999).

This page as a plain text file.
%I A303358 #13 Jan 25 2020 05:56:36
%S A303358 1,2,8,10,12,32,112,128,136,144,152,184,512,1088,2048,2144,2272,2528,
%T A303358 2736,3248,3312,4592,7936,8192,9800,11800,17176,18632,18904,22984,
%U A303358 32768,32896,33664,34688,49024,57152,77248,85952,131072,176400,212400,309168,335376
%N A303358 Bi-unitary deficient-perfect numbers: bi-unitary deficient numbers k for such that 2*k - bsigma(k) is a bi-unitary divisor of k, where bsigma(k) is the sum of bi-unitary divisors of k (A188999).
%C A303358 The bi-unitary version of A271816.
%C A303358 Includes all the odd powers of 2 (A004171).
%H A303358 Amiram Eldar, <a href="/A303358/b303358.txt">Table of n, a(n) for n = 1..171</a>
%e A303358 112 is in the sequence since the sum of its bi-unitary divisors is 1 + 2 + 7 + 8 + 14 + 16 + 56 + 112 = 216 and 2*112 - 216 = 8 is a bi-unitary divisor of 112.
%t A303358 f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] := DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; biunitaryDivisorQ[ div_, n_] := If[Mod[#2,#1]==0, Last@Apply[Intersection, Map[Select[Divisors[#], Function[d, CoprimeQ[d, #/d]]]&, {#1, #2/#1}]]==1, False]& @@{div, n}; aQ[n_] := Module[{d=2n-bsigma[n]},If[d<=0, False,biunitaryDivisorQ[d,n]]]; s={}; Do[ If[aQ[n], AppendTo[s,n]], {n, 1, 10000}]; s
%o A303358 (PARI) udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
%o A303358 gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));
%o A303358 biudivs(n) = select(x->(gcud(x, n/x)==1), divisors(n));
%o A303358 isok(n) = my(divs = biudivs(n), sig = vecsum(divs)); (sig < 2*n) && vecsearch(divs, 2*n-sig); \\ _Michel Marcus_, Apr 27 2018
%Y A303358 Cf. A004171, A188999, A271816, A292982, A303359.
%K A303358 nonn
%O A303358 1,2
%A A303358 _Amiram Eldar_ and _Michael De Vlieger_, Apr 22 2018