This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303360 #32 Apr 24 2018 02:20:06 %S A303360 1,2,4,18,34,166,384,1902,4756,24022,64284,321542,899658,4455690, %T A303360 12888944,63185250,187513426,910880550,2759413788,13295839638, %U A303360 40967821494,195979968882,612569599440,2911592648458,9213101043936,43538337410474,139246245625364 %N A303360 Expansion of Product_{n>=1} ((1 + 4*x^n)/(1 - 4*x^n))^(1/4). %H A303360 Seiichi Manyama, <a href="/A303360/b303360.txt">Table of n, a(n) for n = 0..1000</a> %F A303360 a(n) ~ c * 4^n / n^(3/4), where c = (QPochhammer[-1, 1/4] / QPochhammer[1/4])^(1/4) / Gamma(1/4) = 0.3885547372628... - _Vaclav Kotesovec_, Apr 23 2018 %p A303360 seq(coeff(series(mul(((1+4*x^k)/(1-4*x^k))^(1/4), k = 1..n), x, n+1), x, n), n = 0..35); # _Muniru A Asiru_, Apr 22 2018 %t A303360 nmax = 30; CoefficientList[Series[Product[((1 + 4*x^k)/(1 - 4*x^k))^(1/4), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Apr 22 2018 *) %t A303360 nmax = 30; CoefficientList[Series[(-3*QPochhammer[-4, x] / (5*QPochhammer[4, x]))^(1/4), {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Apr 23 2018 *) %o A303360 (PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1+4*x^k)/(1-4*x^k))^(1/4))) %Y A303360 Expansion of Product_{n>=1} ((1 + 2^b*x^n)/(1 - 2^b*x^n))^(1/(2^b)): A015128 (b=0), A303346 (b=1), this sequence (b=2). %Y A303360 Cf. A303361, A303391, A067855, A303350, A303392. %K A303360 nonn %O A303360 0,2 %A A303360 _Seiichi Manyama_, Apr 22 2018