This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A303361 #22 Apr 24 2018 02:21:31 %S A303361 1,2,10,60,262,1372,7044,32760,153670,789676,3659820,17109320, %T A303361 83073180,381273240,1786996424,8604391920,38832248902,179714213580, %U A303361 845485079580,3834271942440,17666638985652,81920437065288,370224975781560,1685489994025360 %N A303361 Expansion of Product_{n>=1} ((1 + (4*x)^n)/(1 - (4*x)^n))^(1/4). %H A303361 Seiichi Manyama, <a href="/A303361/b303361.txt">Table of n, a(n) for n = 0..1000</a> %F A303361 a(n) ~ 2^(2*n - 5/2) * exp(sqrt(n)*Pi/2) / n^(13/16). - _Vaclav Kotesovec_, Apr 23 2018 %p A303361 seq(coeff(series(mul(((1+(4*x)^k)/(1-(4*x)^k))^(1/4), k = 1..n), x, n+1), x, n), n = 0..35); # _Muniru A Asiru_, Apr 22 2018 %t A303361 nmax = 30; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(1/4), {k, 1, nmax}], {x, 0, nmax}], x] * 4^Range[0, nmax] (* _Vaclav Kotesovec_, Apr 23 2018 *) %o A303361 (PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1+(4*x)^k)/(1-(4*x)^k))^(1/4))) %Y A303361 Expansion of Product_{n>=1} ((1 + (2^b*x)^n)/(1 - (2^b)*x^n))^(1/(2^b)): A015128 (b=0), A303307 (b=1), this sequence (b=2). %Y A303361 Cf. A303360. %K A303361 nonn %O A303361 0,2 %A A303361 _Seiichi Manyama_, Apr 22 2018